Mechanisms of ignition and regimes of combustion waves propagation
DOI:
https://doi.org/10.18321/Keywords:
ignition, wave, combustion, energy, temperature, reactionAbstract
The paper studies the regimes of reaction wave initiation under the conditions of localized transient thermal energy deposition in reactive gaseous mixtures, whose chemistry is governed by chain-branching kinetic. It is shown that the main mechanism of reaction wave initiation is the spontaneous reaction wave originating from the temperature and/or pressure non-uniformity formed in the region of the energy deposition. The possible regimes of combustion are classified depending on the parameters of energy source (power of the energy source, amount of the deposited energy, size of the hot spot) and characteristic time scales (energy deposition time, ignition time, characteristic time scales of acoustic and thermal waves propagation).References
(1). Zel’dovich Ya.B. Regime classification of an exothermic reaction with nonuniform initial conditions // Combustion and Flame. – 1980. — Vol. 39. — P. 211–226.
(2). Зельдович Я.Б., Баренблат Г.И., Либрович В.Б., Махвиладзе Г.М. Математическая теория горения. – М.: Наука, 1980. – Гл. 4, §4.
(3). Liberman M.A., Kiverin A.D., Ivanov M.F. Regimes of chemical reaction waves initiated by nonuniform initial conditions for detailed chemical reaction models // Physical Review E. – 2012. – Vol. 85. – 056312.
(4). Maas U., Warnatz J. Ignition processes in hydrogen–oxygen mixtures // Combustion and Flame. – 1988. – Vol. 74. – P. 53–69.
(5). Kassoy D.R., Kuehn J.A., Nabity M.W., Clarke J.F. Detonation initiation on the microsecond time scale: DDTs // Combustion Theory and Modelling. – 2008. – Vol. 12. – P. 1009–1047.
(6). Sloane T.M., Ronney P.D. A comparison of ignition phenomena modelled with detailed and simplified kinetics // Combustion Science and Technology. – 1993. – Vol. 88. – P. 1–13.
(7). Ivanov M.F., Kiverin A.D., Liberman M.A. Hydrogen–oxygen flame acceleration and transition to detonation in channels with no-slip walls for a detailed chemical reaction model // Physical Review E. – 2011. – Vol. 83. – 056313.
(8). Варнатц Ю., Маас У., Диббл Р. Горение. – М.: Физматлит, 2003. – 351 с.
(9). McBride B.J., Gordon S., Reno M.A. Coefficients for calculating thermodynamic and transport properties of individual species. – NASA Technical Memorandum 4513, 1993. – 89 p.
(10). Белоцерковский О.М., Давыдов Ю.М. Метод крупных частиц в газовой динамике. Вычислительный эксперимент. – М.: Наука, 1982. – 392 с.
(11). Liberman M.A., Ivanov M.F., Valiev D.M., Eriksson L.E. Hot spot formation by the propagating flame and the influence of EGR on knock occurrence in SI engines // Combustion Science and Technology. – 2006. – Vol. 178, No. 9. – P. 1613–1647.
(12). Голуб В.В., Иванов М.Ф., Баженова Т.В., Брагин М.В. Самовоспламенение горючего газа при импульсном истечении его в окислительную среду // Письма в журнал технической физики. – 2006. – Т. 32, вып. 6. – С. 77–82.
(13). Гальбурт В.А., Иванов М.Ф., Петухов В.А. Математическое моделирование различных режимов развития горения в конусе // Химическая физика. – 2007. – Т. 26, № 2. – С. 46–52.
(14). Lewis D., Elbe G. Combustion, Flames and Explosion of Gases. – 2nd ed. – Part 1. – New York: Academic Press, 1961.
Downloads
Published
Issue
Section
License
Copyright (c) 2012 А.Д. Киверин, М.Ф. Иванов, М.А. Либерман

This work is licensed under a Creative Commons Attribution 4.0 International License.