СТРУКТУРА И МОРФОЛОГИЯ УНТ, СИНТЕЗИРОВАННЫХ НА НАНОПОРОШКАХ Ni

Авторы

  • Г. Партизан Институт проблем горения, 050012, ул. Богенбай батыра, 172, Алматы, Казахстан;Казахский Национальный Университет им. аль-Фараби, 050040, пр. аль-Фараби, 71, Алматы, Казахстан
  • Б.З. Мансуров Институт проблем горения, 050012, ул. Богенбай батыра, 172, Алматы, Казахстан
  • Б.С. Медянова Институт проблем горения, 050012, ул. Богенбай батыра, 172, Алматы, Казахстан; Казахский Национальный Университет им. аль-Фараби, 050040, пр. аль-Фараби, 71, Алматы, Казахстан
  • А.Б. Кошанова Институт проблем горения, 050012, ул. Богенбай батыра, 172, Алматы, Казахстан; Казахский Национальный Университет им. аль-Фараби, 050040, пр. аль-Фараби, 71, Алматы, Казахстан
  • Б.А. Алиев Казахский Национальный Университет им. аль-Фараби, 050040, пр. аль-Фараби, 71, Алматы, Казахстан
  • Xin Jiang Institute of Materials Engineering, University of Siegen, Paul-Bonatz-Straße 9-11, 57076, Siegen, Germany

Ключевые слова:

термическое химическое осаждение, углеродные наноструктуры, нанопорошки металла, медная пленка, многостенные углеродные нанотрубки

Аннотация

В статье представлены результаты экспериментов по синтезу углеродных наноструктур методом термического химического осаждения из газовой фазы с использованием нанопорошков никеля, полученных методом электрического взрыва проводников в качестве катализаторов. В ходе проведённых экспериментов были определены технологические параметры, оптимальные для низкотемпературного роста углеродных нанотрубок. СЭМ-исследования выявили существование диапазона температур и давлений между низко- и высокотемпературным режимами синтеза, в котором не происходит рост углеродных наноструктур. Результаты спектроскопии комбинационного рассеяния света и рентгеноструктурного анализа показали, что наиболее высокой кристалличностью обладают образцы, выращенные на нижней температурной границе, определённой в ходе проведения экспериментов. Исследования методом просвечивающей электронной микроскопии указывают на то, что синтезированные структуры являются многостенными углеродными нанотрубками с кластерами металла внутри канала трубки.

Библиографические ссылки

(1) Krueger, A. (2010) Carbon Materials and Nanotechnology. Weinheim: WILEY-VCH Verlag GmbH & Co. KGaA, 475 p.

(2) Радушкевич, Л.В. n Лукьянович, В.М. (1952) ‘O структуре углерода, образующегося при термическом разложении окиси углерода на железном контакте’, Журнал физической химии, 26, pp. 88-95.

(3) Xia, J.H., Jiang, X. and Jia, C.L. (2009) ‘The size effect of catalyst on the growth of helical carbon nanofibers’, Applied Physics Letters, 95, p. 223110-1-223110-3. https://doi.org/10.1063/1.3271031

(4) Merchan-Merchan, W., Saveliev, A.V., Kennedy, L. and Jimenez, W.C. (2010) ‘Combustion synthesis of carbon nanotubes and related nanostructures’, Progress in Energy and Combustion Science, 36, pp. 696-727. https://doi.org/10.1016/j.pecs.2010.02.005

(5) Сабитов, С., Кошанова, А., Медянова, Б.С., Партизан, Г. and Мансуров, Б.З. (2015) ‘Синтез углеродных наноструктур на никелевых пленках методом кислородно-ацетиленовой горелки’, Горение и плазмохимия, 13(1), pp. 47-52.

(6) Буранова, Ю.С. (2011) ‘Физика, электроника, нанотехнологии’, Труды МФТИ, 3(3), pp. 30-41.

(7) Лернер, М.И., Сваровская, Н.В., Псахье, С.Г. and Бакина, О.В. (2009) ‘Технология получения, характеристики и некоторые области применения электровзрывных нанопорошков металлов’, Российские нанотехнологии, 4(11-12), pp. 56-68.

(8) Pakdee, U., Srabua, S., Phongphala, A. and Pawong, C. (2015) ‘Effects of Catalyst on Carbon Nanotubes Synthesized by Thermal Chemical Vapor Deposition Method’, Applied Mechanics and Materials, 804, pp. 47-50. https://doi.org/10.4028/www.scientific.net/AMM.804.47

(9) Haroon Ur Rashid, K., Yu, K., Umar, M.N., Anjum, M.N., Khan, K., Ahmad, N. and Jan, M.T. (2015) ‘Catalyst role in chemical vapor deposition (CVD) process: a review’, Rev. Adv. Mater. Sci., 40, pp. 235-248.

(10) Partizan, G., Mansurov, B.Z., Medyanova, B.S., Aliev, B.A. and Xin, J. (2015) ‘Synthesis of carbon nanostructures by thermal CVD on nickel nanoparticles’, Journal of Engineering Physics and Thermophysics, 88(6), pp. 1451-1458. https://doi.org/10.1007/s10891-015-1329-9

(11) Partizan, G., Mansurov, B.Z., Medyanova, B.S., Кошанова, А.Б., Aliyev, B.A. and Xin, J. (2015) ‘Synthesis of carbon nanostructures on iron nanopowders obtained by electric explosion of conductors’, Eurasian Chemical-technological Journal, 17, pp. 200-207.

(12) Hodkiewicz, J. (2010) ‘Characterizing Carbon Materials with Raman Spectroscopy’, Thermo Fisher Scientific. Application Note: 51901.

(13) Bokobza, L. and Zhang, J. (2012) ‘Raman spectroscopic characterization of multiwall carbon nanotubes and of composites’, eXPRESS Polymer Letters, 6(7), pp. 601-608. https://doi.org/10.3144/expresspolymlett.2012.63

(14) Lehman, J.H., Terrones, M., Mansfield, E., Hurst, K.E. and Meunier, V. (2011) ‘Evaluating the characteristics of multiwall carbon nanotubes’, Carbon, 49, pp. 2581-2602. https://doi.org/10.1016/j.carbon.2011.03.028

(16) Mohd Zobir, S.A.F., Abu Bakar, S., Abdullah, S., Zainal, Z., Sarijo, S.H. and Rusop, M. (2012) ‘Raman Spectroscopic Study of Carbon Nanotubes Prepared Using Fe/ZnO-Palm Olein-Chemical Vapour Deposition’, Journal of Nanomaterials, 2012, pp. 1-6. https://doi.org/10.1155/2012/451473

(16) Kim, K.K., Park, J.S., Kim, S.J., Geng, H.Z., An, K.H., Yang, C.M. et al. (2007) ‘Dependence of Raman spectra G' band intensity on metallicity of single-wall carbon nanotubes’, Phys Rev B, 76(20), p. 205426-1-8. https://doi.org/10.1103/PhysRevB.76.205426

(17) Zheng, Y. and Barron, A.R. (2010) ‘Characterization of graphene by Raman spectroscopy’. Available at: http://cnx.org/content/m34667/1.2/ (Accessed: 29 June 2010).

(18) Mironova-Ulmane, N., Kuzmin, A., Steins, I., Grabis, J., Sildos, I. and Pars, M. (2007) ‘Raman scattering in nanosized nickel oxide NiO’, Journal of Physics: Conference Series, 93, p. 012039-1-5. https://doi.org/10.1088/1742-6596/93/1/012039

(19) Ferrari, A.C. and Robertson, J. (2004) ‘Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond’, Phil. Trans. R. Soc. Lond. A, 362, pp. 2477-2512. https://doi.org/10.1098/rsta.2004.1452

(20) Zeng, B., Gao, M., Liu, S., Pan, T., Huang, Z. and Lin, Y. (2013) ‘Thermal chemical vapor deposition of layered aligned carbon-nanotube films separated by graphite layers’, Phys. Status Solidi A, 210(6), pp. 1128-1132. https://doi.org/10.1002/pssa.201228579

(21) Costa, S., Borowiak-Palen, E., Kruszyńska, M., Bachmatiuk, A. and Kaleńczuk, R.J. (2008) ‘Characterization of carbon nanotubes by Raman spectroscopy’, Materials Science-Poland, 26(2), pp. 1-9.

Загрузки

Опубликован

10-02-2016

Как цитировать

Партизан, Г., Мансуров, Б., Медянова, Б., Кошанова, А., Алиев, Б., & Jiang, X. (2016). СТРУКТУРА И МОРФОЛОГИЯ УНТ, СИНТЕЗИРОВАННЫХ НА НАНОПОРОШКАХ Ni. Горение и плазмохимия, 14(1), 15-26. https://cpc-journal.kz/index.php/cpcj/article/view/279