Способы синтеза MXenes из MAX-фаз: сравнительный обзор методов травления и их применения
DOI:
https://doi.org/10.18321/cpc23(3)253-271Ключевые слова:
MXene, MAX-фаза, методы травления, безфтористый синтез, устройства накопления энергии, катализАннотация
MXene ─ это класс двумерных (2D) материалов, представляющих собой карбиды, нитриды и карбонитриды переходных металлов. Благодаря высокой электрической проводимости, гидрофильности и возможности тонкой настройки поверхностного химического состава эти материалы привлекают широкое внимание. Обычно MXene получают из слоистых тройных прекурсоров, известных как MAX-фазы, с общей формулой Mn+1AXn, где: M ─ ранний переходный металл; A ─ элемент 13-й или 14-й группы; X ─ углерод и/или азот. Переход от MAX к MXene осуществляется посредством селективного удаления A-слоя. Выбор целесообразной стратегии синтеза и травления играет ключевую роль в определении структуры и функциональных свойств получаемого материала. В данном обзоре представлен всесторонний анализ последних достижений в области синтеза MAX-фаз и производства MXene-материалов. Особое внимание уделено методам травления ─ таким как обработка фтористоводородной кислотой (HF), in situ HF (LiF + HCl), плавлеными солями и электрохимическим подходам ─ и их влиянию на морфологию, поверхностные функциональные группы и свойства MXene. В результате сравнительного анализа выявлены преимущества и ограничения каждого метода с точки зрения безопасности, масштабируемости и качества конечного продукта. В обзоре также обозначены актуальные проблемы, включая необходимость разработки фторсвободных и экологически безопасных методов травления, а также важность управления поверхностными окончаниями. В заключение даны рекомендации по направлению будущих исследований с целью адаптации методов синтеза MXene для применения в системах хранения энергии нового поколения, катализе, очистке окружающей среды и электронике.
Библиографические ссылки
(1) N. Kumar, H. Singh, M. Khatri, et al. 2D-transition metal carbides and nitrides: materials for the next generation, ACS Symp. Ser., Amer. Chem. Soc., Washington, DC, 2023, pp. 1–25. Crossref
(2) J. Zhou, M. Dahlqvist, J. Björk, et al. Atomic scale design of MXenes and their parent materials – from theoretical and experimental perspectives, Chem. Rev. 123 (2023) 13291–13322. Crossref
(3) B. Anasori, M.R. Lukatskaya, Y. Gogotsi. 2D metal carbides and nitrides (MXenes) for energy storage, in: MXenes, Jenny Stanford Publ., New York, 2023, pp. 677–722. Crossref
(4) Y. Gogotsi, B. Anasori. The rise of MXenes, in: MXenes, Jenny Stanford Publ., New York, 2023, pp. 3–11. Crossref
(5) L. Jia, S. Zhou, A. Ahmed, et al. Tuning MXene electrical conductivity towards multifunctionality, Chem. Eng. J. 475 (2023) 146361. Crossref
(6) V. Kedambaimoole, K. Harsh, K. Rajanna, et al. MXene wearables: properties, fabrication strategies, sensing mechanism and applications, Mater. Adv. 3 (2022) 3784–3808. Crossref
(7) S. Liu, H. Zhang, J. Chen, et al. Functionalization strategies of MXene architectures for electrochemical energy storage applications, Energies 18 (2025) 1223. Crossref
(8) M.I.H. Protyai, A. Bin Rashid. A comprehensive overview of recent progress in MXene-based polymer composites: their fabrication processes, advanced applications, and prospects, Heliyon 10 (2024) e37030. Crossref
(9) W. Fan, Q. Wang, K. Rong, et al. MXene enhanced 3D needled waste denim felt for high-performance flexible supercapacitors, Nano-Micro Lett. 16 (2023) 226. Crossref
(10) L. Ottaviano, D. Mastrippolito. The future ahead gas sensing with two-dimensional materials, Appl. Phys. Lett. 123 (2023) 23401. Crossref
(11) Z. Li, W. Huang, J. Liu, et al. Embedding CdS@Au into ultrathin Ti3–xC2Ty to build dual Schottky barriers for photocatalytic H2 production, ACS Catal. 11 (2021) 8510–8520. Crossref
(12) M. Cheng, M. Ying, R. Zhao, et al. Transparent and flexible electromagnetic interference shielding materials by constructing sandwich AgNW@MXene/wood composites, ACS Nano 16 (2022) 16996–17007. Crossref
(13) X. Li, F. Ran, F. Yang, et al. Advances in MXene films: synthesis, assembly, and applications, Trans. Tianjin Univ. 27 (2021) 217–247. Crossref
(14) D.N. Ampong, E. Agyekum, F.O. Agyemang, et al. MXene: fundamentals to applications in electrochemical energy storage, Discov. Nano 18 (2023) 3786. Crossref
(15) B.C. Wyatt, S.K. Nemani, K. Desai, et al. High-temperature stability and phase transformations of titanium carbide (Ti3C2Tx) MXene, J. Phys. Condens. Matter 33 (2021) 224002. Crossref
(16) M. Naguib, M. Kurtoglu, V. Presser, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2, Adv. Mater. 23 (2011) 4248–4253. Crossref
(17) S. Badie, D. Sebold, R. Vaßen, et al. Mechanism for breakaway oxidation of the Ti2AlC MAX phase, Acta Mater. 215 (2021) 117025. Crossref
(18) K. Ahmad, W. Raza, R.A. Khan. Ti3AlC2 MAX phase modified screen-printed electrode for the fabrication of hydrazine sensor, Micromachines 15 (2024) 633. Crossref
(19) T. Liu, G. Tan, S. Feng, et al. Dual localized surface plasmon resonance effect enhances Nb2AlC/Nb2C MXene thermally coupled photocatalytic reduction of CO2 hydrogenation activity, J. Colloid Interface Sci. 652 (2023) 599–611. Crossref
(20) A.A. Sijuade, F.L. Bellevu, S.K. Devendhar Singh, et al. Processing of V2AlC MAX phase: optimization of sintering temperature and composition, Ceram. Int. 50 (2024) 3733–3738. Crossref
(21) Y. Du, F. Wang, M. Hu, et al. Stability and wettability of ternary carbide Mo2Ga2C in molten metals, Ceram. Int. 49 (2023) 21449–21454. Crossref
(22) M. Gandara, D. Mladenović, M. de J. Oliveira Martins, et al. MAX phase (Nb4AlC3) for electrocatalysis applications, Small 20 (2024) 2310576. Crossref
(23) M. Naguib, V.N. Mochalin, M.W. Barsoum, et al. 25th anniversary article: MXenes: a new family of two-dimensional materials, Adv. Mater. 26 (2013) 992–1005. Crossref
(24) R. Li, L. Zhang, L. Shi, et al. MXene Ti3C2: an effective 2D light-to-heat conversion material, ACS Nano 11 (2017) 3752–3759. Crossref
(25) S. Kumar. Fluorine-free MXenes: recent advances, synthesis strategies, and mechanisms, Small 20 (2023) 2308225. Crossref
(26) O. Mashtalir, M. Naguib, V.N. Mochalin, et al. Intercalation and delamination of layered carbides and carbonitrides, in: MXenes, Jenny Stanford Publ., New York, 2023, pp. 359–377. Crossref
(27) S. Gokul Eswaran, M. Rashad, A. Santhana Krishna Kumar, et al. A comprehensive review of MXene-based emerging materials for energy storage applications and future perspectives, Chem. Asian J. 20 (2025) e202401181. Crossref
(28) T.A. Oyehan, B.A. Salami, A.A. Abdulrasheed, et al. MXenes: synthesis, properties, and applications for sustainable energy and environment, Appl. Mater. Today 35 (2023) 101993. Crossref
(29) R. Indhumathi, A.S. Priya, R. Aepuru, et al. Advancements, prospects, and challenges in the synthesis and stability of MXenes for energy applications: a comprehensive review, J. Mater. Sci. 60 (2025) 5649–5685. Crossref
(30) R. Verma, A. Sharma, V. Dutta, et al. Recent trends in synthesis of 2D MXene-based materials for sustainable environmental applications, Emerg. Mater. 7 (2023) 35–62. Crossref
(31) M.W. Barsoum, T. El‐Raghy. Synthesis and characterization of a remarkable ceramic: Ti3SiC2, J. Am. Ceram. Soc. 79 (1996) 1953–1956. Crossref
(32) B.Y. Liang. Combustion synthesis of Ti3SiC2 induced by spark plasma sintering, Mater. Res. Innov. 17 (2013) 448–452. Crossref
(33) P. Eklund, M. Beckers, U. Jansson, et al. The M+1AX phases: materials science and thin-film processing, Thin Solid Films 518 (2010) 1851–1878. Crossref
(34) E.P. Simonenko, N.P. Simonenko, I.A. Nagornov, et al. Synthesis of MAX phases in the Ti2AlC–V2AlC system as precursors of heterometallic MXenes Ti2–xVxC, Russ. J. Inorg. Chem. 67 (2022) 705–714. Crossref
(35) M.S. Alam, M.A. Chowdhury, T. Khandaker, et al. Advancements in MAX phase materials: structure, properties, and novel applications, RSC Adv. 14 (2024) 26995–27041. Crossref
(36) M. Suarez, A. Fernandez, J.L. Menendez, et al. Challenges and opportunities for spark plasma sintering: a key technology for a new generation of materials, Sinter. Appl. InTech. 13 (2013). Crossref
(37) A. Bhat, S. Anwer, K.S. Bhat, et al. Prospects challenges and stability of 2D MXenes for clean energy conversion and storage applications, npj 2D Mater. Appl. 5 (2021) 1–21. Crossref
(38) W. Meng, X. Liu, H. Song, et al. Advances and challenges in 2D MXenes: from structures to energy storage and conversions, Nano Today 40 (2021) 101273. Crossref
(39) M. Naguib, O. Mashtalir, J. Carle, et al. Two-dimensional transition metal carbides, ACS Nano 6 (2012) 1322–1331. Crossref
(40) B. Anasori, Y. Xie, M. Beidaghi, et al. Two-dimensional, ordered, double transition metals carbides (MXenes), ACS Nano 9 (2015) 9507–9516. Crossref
(41) T. Amrillah, C. Abdullah, A. Hermawan, et al. Towards greener and more sustainable synthesis of MXenes: a review, Nanomaterials 12 (2022) 4280. Crossref
(42) M. Murugesan, K.R. Nagavenkatesh, P. Devendran, et al. Scalable synthesis of 2D-layered Ti3C2 MXene by HF etching method; electrochemical investigations and device fabrication to enhancing capacitive nature, Mater. Sci. Eng. B 309 (2024) 117607. Crossref
(43) I.W.P. Chen, A.A. Kashale, Y.H. Pan. Hydrofluoric acid-free synthesis of Ti3C2Tx MXene nanostructures for energy applications, ACS Appl. Nano Mater. 6 (2023) 1985–1995. Crossref
(44) X. Zhang, W. Zhang, H. Zhao. Electrochemical performance of Ti3C2Tx MXenes obtained via ultrasound assisted LiF-HCl method, Mater. Today Commun. 33 (2022) 104384. Crossref
(45) A. Gentile, S. Marchionna, M. Balordi, et al. Critical analysis of MXene production with in‐situ HF forming agents for sustainable manufacturing, ChemElectroChem 9 (2022) 1–11. Crossref
(46) P. Sarkar, K. Chatterjee, P. Pal, et al. Exploring the molarity of lithium fluoride in minimally intensive layer delamination (MILD) method for efficient room temperature synthesis of high quality Ti3C2Tx free-standing film, Mater. Sci. Semicond. Process. 185 (2025) 108881. Crossref
(47) D.D. Kruger, H. García, A. Primo. Molten salt derived MXenes: synthesis and applications, Adv. Sci. (2024) 7106. Crossref
(48) P. Huang, W.Q. Han. Recent advances and perspectives of Lewis acidic etching route: an emerging preparation strategy for MXenes, Nano-Micro Lett. 15 (2023) 1039. Crossref
(49) L. Liu, H. Zschiesche, M. Antonietti, et al. Tuning the surface chemistry of MXene to improve energy storage: example of nitrification by salt melt, Adv. Energy Mater. 13 (2022) 2709. Crossref
(50) S. Siddique, A. Waheed, M. Iftikhar, et al. Fluorine-free MXenes via molten salt Lewis acidic etching: applications, challenges, and future outlook, Prog. Mater. Sci. 139 (2023) 101183. Crossref
(51) W. Hu, M. Yang, T. Fan, et al. A simple, efficient, fluorine‐free synthesis method of MXene/Ti3C2Tx anode through molten salt etching for sodium‐ion batteries, Batter. Energy 2 (2023) 21. Crossref
(52) S. De, S. Acharya, S. Sahoo, et al. A quick and effective strategy for the synthesis of Ti3C2Tx via electrochemical method, Energy Adv. 3 (2024) 774–777. Crossref
(53) G. Li, S. Lian, J. Wang, et al. Surface chemistry engineering and the applications of MXenes, J. Materiomics 9 (2023) 1160–1184. Crossref
(54) K.C. Chan, X. Guan, T. Zhang, et al. The fabrication of Ti3C2 and Ti3CN MXenes by electrochemical etching, J. Mater. Chem. A 12 (2024) 25165–25175. Crossref
(55) M.P. Bilibana. Electrochemical properties of MXenes and applications, Adv. Sens. Energy Mater. 2 (2023) 100080. Crossref
(56) N. Kubitza, C. Büchner, J. Sinclair, et al. Extending the chemistry of layered solids and nanosheets: chemistry and structure of MAX phases, MAB phases and MXenes, ChemPlusChem 88 (2023) 214. Crossref
(57) U. Khan, B. Gao, L.B. Kong, et al. Green synthesis of fluorine-free MXene via hydrothermal process: a sustainable approach for proton supercapacitor electrodes, Electrochim. Acta 475 (2024) 143651. Crossref
(58) M. Zhao, C.E. Ren, Z. Ling, et al. Flexible MXene/carbon nanotube composite paper with high volumetric capacitance, Adv. Mater. 27 (2014) 339–345. Crossref
(59) Q.X. Xia, J. Fu, J.M. Yun, et al. High volumetric energy density annealed-MXene-nickel oxide/MXene asymmetric supercapacitor, RSC Adv. 7 (2017) 11000–11011. Crossref
(60) L.Å. Näslund, I. Persson. XPS spectra curve fittings of Ti3C2Tx based on first principles thinking, Appl. Surf. Sci. 593 (2022) 153442. Crossref
(61) S. Krishnan, S. Marimuthu, M.K. Singh, et al. Two-dimensional Ti3C2Tx MXene nanosheets for CO2 electroreduction in aqueous electrolytes, Energy Adv. 2 (2023) 1166–1175. Crossref
(62) S. Adomaviciute-Grabusove, A. Popov, S. Ramanavicius, et al. Monitoring Ti3C2Tx MXene degradation pathways using Raman spectroscopy, ACS Nano 18 (2024) 13184–13195. Crossref
(63) T. Malina, B. Hamawandi, M.S. Toprak, et al. Tuning the transformation and cellular signaling of 2D titanium carbide MXenes using a natural antioxidant, Matter 7 (2024) 191–215. Crossref
(64) M. Jussambayev, K. Shakenov, S. Sultakhan, et al. MXenes for sustainable energy: a comprehensive review on conservation and storage applications, Carbon Trends 19 (2025) 100471. Crossref
(65) Y. Li, H. Shao, Z. Lin, et al. A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte, Nat. Mater. 19 (2020) 894–899. Crossref
(66) Z. Zhang, X. Zeng, C. Jin, et al. Molten salt-modified Mo-MXene coupled with CoFe-LDH heterostructure for stable oxygen evolution reaction, Mater. Today Energy 49 (2025) 101835. Crossref
(67) M. Ghidiu, M. Naguib, C. Shi, et al. Synthesis and characterization of two-dimensional Nb4C3 (MXene), Chem. Commun. 50 (2014) 9517–9520. Crossref
(68) R. Bhardwaj, A. Hazra. MXene-based gas sensors, J. Mater. Chem. C 9 (2021) 15735–15754. Crossref
(69) M. Han, C.E. Shuck, R. Rakhmanov, et al. Beyond Ti3C2Tx: MXenes for electromagnetic interference shielding, ACS Nano 14 (2020) 5008–5016. Crossref
(70) H. Zhang, Z. Wang, Y. Shen, et al. Ultrathin 2D Ti3C2Tx MXene membrane for effective separation of oil-in-water emulsions in acidic, alkaline, and salty environment, J. Colloid Interface Sci. 561 (2020) 861–869. Crossref
(71) L.Y. Xiu, Z.Y. Wang, J.S. Qiu. General synthesis of MXene by green etching chemistry of fluoride-free Lewis acidic melts, Rare Met. 39 (2020) 1237–1238. Crossref
(72) M. Li, J. Lu, K. Luo, et al. Element replacement approach by reaction with Lewis acidic molten salts to synthesize nanolaminated MAX phases and MXenes, J. Am. Chem. Soc. 141 (2019) 4730–4737. Crossref .
(73) W. Huang, J. Wang, W. Lai, et al. MXene surface architectonics: bridging molecular design to multifunctional applications, Molecules 30 (2025) 1929. Crossref
(74) Z. Bao, C. Lu, X. Cao, et al. Role of MXene surface terminations in electrochemical energy storage: a review, Chin. Chem. Lett. 32 (2021) 2648–2658. Crossref
(75) M.Z. Abid, K. Rafiq, A. Aslam, et al. Scope, evaluation and current perspectives of MXene synthesis strategies for state of the art applications, J. Mater. Chem. A 12 (2024) 7351–7395. Crossref
(76) M.J. Clark, A.E. Oakley, N. Zhelev, et al. MXene synthesis in a semi-continuous 3D-printed PVDF flow reactor, Nanoscale Adv. 7 (2025) 2166–2170. Crossref
Загрузки
Опубликован
Выпуск
Раздел
Лицензия

Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.