Modification of petroleum bitumen with mechanochemically activated schungite of the Koksu deposit

Authors

  • A.R. Kenzhegalieva Al-Farabi Kazakh National University, 71 al-Farabi ave., 71, Almaty, Kazakhstan
  • D.B. Abdikhan Al-Farabi Kazakh National University, 71 al-Farabi ave., 71, Almaty, Kazakhstan
  • Y.K. Ongarbayev Al-Farabi Kazakh National University, 71 al-Farabi ave., 71, Almaty, Kazakhstan; Institute of Combustion Problems, 172 Bogenbai batyr str., Almaty, Kazakhstan

DOI:

https://doi.org/10.18321/cpc537

Keywords:

битум, модификация, шунгит, механохимическая активация, измельчение.

Abstract

The paper presents the results of experiments on the use of shungite rocks from the Koksu deposit after mechanochemical activation as a modifying additive to improve the physical and mechanical characteristics of oil road bitumen. Samples of shungite brand “Taurit” shale and carbonate origin with a particle size of 1 mm and 20 microns are used. Superfine samples of shungite with a particle size of 5 μm were obtained by mechanochemical activation. Modification of bitumen with shungite samples led to a decrease in the depth of penetration of the needle and extensibility, an increase in the softening temperature and adhesive ability of bitumen. The positive effect of mechanochemically activated shungite on the physical and mechanical properties of bitumen is explained by the change in the structure of shungite as a result of grinding. The optimal modifier was a sample of shungite of carbonate origin in the amount of 0.5 wt.% after mechanochemical activation. A favorable effect on the characteristics of bitumen allows the use of natural raw material - shungite after mechanochemical activation as a filler for bituminous binders and asphalt concrete mixtures based on them.

References

(1). Jasso M, Bakos D, MacLeod D, Zanzotto L (2013) Constr. Build. Mater. 38:759-765. https://doi.org/10.1016/j.conbuildmat.2012.09.043

(2). Feng ZG, Xu S, Sun YB, Yu JY (2012). J. Test. Eval. 40:728-733. https://doi.org/10.1520/JTE20120047

(3). Modarres A (2013) Constr. Build. Mater. 47:218-222. https://doi.org/10.1016/j.conbuildmat.2013.05.044

(4). Zhang JT, Yang J, Kim R (2015) Constr. Build. Mater. 79:136-144. https://doi.org/10.1016/j.conbuildmat.2014.12.085

(5). Ouyang CF, Wang SF, Zhang Y, Zhang YX (2016) Polym. Degrad. Stab. 91:795-804. https://doi.org/10.1016/j.polymdegradstab.2005.06.009

(6). Feng ZG, Yu JY, Zhang HL, Kuang DL, Xue LH (2013) Mater. Struct. 46:1123-1132. https://doi.org/10.1617/s11527-012-9958-3

(7). Kök BV, Yilmaz M, Çakirog˘lu M, Kulog˘lu N, Sengür A (2013) Fuel 106:265-270. https://doi.org/10.1016/j.fuel.2012.12.073

(8). Khadivar A, Kavussi A (2013) Constr. Build. Mater. 47:1099-1105. https://doi.org/10.1016/j.conbuildmat.2013.05.093

(9). Zhambolova A, Vocaturo AL, Tileuberdi Y, Ongarbayev Y, Caputo P, Aiello I, Rossi CO, Godbert N (2020) Applied Sciences

(17):6065-6075. https://doi.org/10.3390/app10176065

(10). Wu S, Tahri O (2019) Road Mater. Pavement 22:1-22. https://doi.org/10.1080/14680629.2019.1642946

(11). Yang Q, Liu Q, Zhong J, Hong B, Wang D, Oeser M. (2019) Construct. Build. Mater. 201:580-589. https://doi.org/10.1016/j.conbuildmat.2018.12.173

(12). Ziari H, Moniri A, Norouzi N (2019) Petrol. Sci. Technol. 37:1946-1951. https://doi.org/10.1080/10916466.2018.1471489

(13). Amin I, El-Badawy SM, Breakah T, Ibrahim MHZ (2016) Construct. Build. Mater. 121:361-372. https://doi.org/10.1016/j.conbuildmat.2016.05.168

(14). Sabaraya IV, Filonzi A, Hajj R, Das D, Saleh NB, Bhasin A (2018) J. Mater. Civ. Eng. 30: 04018166. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002315

(15). Caputo P, Porto M, Angelico R, Loise V, Calandra P, Rossi CO (2020) Advances in Colloid and Interface Science 285:102283. https://doi.org/10.1016/j.cis.2020.102283

(16). Chou NH, Pierce N, Lei Y, Perea-López N, Fujisawa K, Subramanian S, Robinson JA, Chen G, Omichi K, Rozhkov SS, Rozhkova NN, Terrones M, Harutyunyan AR (2018) 130:105-111. https://doi.org/10.1016/j.carbon.2017.12.109

(17). Volkova IB, Bogdanova MV (1986) Int. J. Coal Geol. 6(4):369-379. https://doi.org/10.1016/0166-5162(86)90011-X

(18). Tiwari SK, Kumar V, Huczko A, Oraon R, Adhikari AD, Nayak GC (2016) Crit. Rev. Solid State Mater. Sci. 41(4):257-317. https://doi.org/10.1080/10408436.2015.1127206

(19). Gusmão R, Sofer Z, Bouša D, Pumera M (2017) Chem. Eur. J. 23(72):18232-18238. https://doi.org/10.1002/chem.201703974

(20). Ongarbayev Y, Baigulbayeva M, Tileuberdi Y, Ualieva P, Abdieva G (2022) Journal of Ecological Engineering. 23(5):16-25. https://doi.org/10.12911/22998993/146386

(21). Tamburri E, Carcione R, Politi S, Angjellari M, Lazzarini L, Vanzetti LE, Macis S, Pepponi G, Terranova ML (2018) Inorg. Chem. 57(14):8487-8498. https://doi.org/10.1021/acs.inorgchem.8b01164

(22). Krasnovyd SV, Konchits AA, Shanina BD, Valakh MY, Yanchuk IB, Yukhymchuk VO, Yefanov AV, Skoryk MA (2015) Nanoscale Res. Lett. 10(1):78. https://doi.org/10.1186/s11671-015-0767-9

(23). Chazhengina SY, Kovalevski VV (2013) Eur. J. Mineral. 25(5):835-843. https://doi.org/10.1127/0935-1221/2013/0025-2327

(24). Sorokina ОV, Potapov ЕE, Reznichenko SV, Bobrov АP, Smal VА, Yadykina VV, Tikunova IV (2018) Rubber [Kauchuk i rezina] 77(2):92-94. (In Russian).

(25). Vysotckaya МА, Rusina SY, Beliaev D, Kiselev О (2015). Shungite as a component of a bitumenmineral composition for the road industry [Shungit – kak komponent bitumomineralnoi kompozitcii dlya dorozhnoi otrasli]. Proceedings of the annual scientific session of the Asphalt Concrete Researchers Association. Мoscow, 2015. P.18-26. (In Russian).

(26). Sheverdiaev ON, Krynkina VN (2007) Energy saving and water treatment [Energosberezhenie i vodopodgotovka] 74-75. (In Russian).

(27). ST RK 1226-2003. Bitumen and bitumen binders. Method for determining the depth of penetration of the needle [GSI. Bitumy i bitumnye vyazhushchie. Metod opredeleniya glubiny pronikaniya igly]. Astana, Kazakhstan 2003. (in Russian and Kazakh)

(28). ST RK 1227-2003. Bitumen and bitumen binders. Determination of the softening point by the ring and ball method [GSI. Bitumy i bitumnye vyazhushchie. Opredelenie tochki razmyagcheniya metodom kol’ca i shara]. Astana, Kazakhstan 2003. (in Russian and Kazakh).

(29). ST RK 1374-2005. Bitumen and bitumen binders. Method for determining extensibility [GSI. Bitumy i bitumnye vyazhushchie. Metod opredelenie rastyazhimosti]. Astana, Kazakhstan 2005. (in Russian and Kazakh).

(30). ST RK 1374-2005. Bitumen and bitumen binders. Method for determining the adhesion of the binder [Bitumy i bitumnye vyazhushchie. Metod opredelenie adgezii vyazhushchego]. Astana, Kazakhstan 2008. (in Russian and Kazakh).

(31). Chernousov DI Use of asphalt binder with shungite in the construction of road surfaces [Primenenie asfaltovogo viazhushego s shungitom pri ustroistve dorozhnyh pokrytii]. Abstract of the dissertation for the degree of candidate of technical sciences, Voronezh, 2011. 19 p.

Published

2022-03-16

How to Cite

Kenzhegalieva, A., Abdikhan, D., & Ongarbayev, Y. (2022). Modification of petroleum bitumen with mechanochemically activated schungite of the Koksu deposit. Combustion and Plasma Chemistry, 20(2), 133–141. https://doi.org/10.18321/cpc537