Особенности взаимодействия в растворах полистирола и фуллерена C70
DOI:
https://doi.org/10.18321/cpc23(2)123-136Ключевые слова:
фуллерен C70, полимер полистирол, бензольный раствор, агрегация, нанокластер, пленка полимер/фуллерен, стабильность, показатель преломленияАннотация
Добавление нанонаполнителей в полистирольные полимеры приводит к созданию материалов с новыми уникальными характеристиками для широкого применения. В данной работе физические процессы, происходящие в бензольных растворах полистирола (ПС) и фуллерена C70 при различных соотношениях компонентов, исследовались с использованием методов рефрактометрии, ареометрии, инфракрасной и Рамановской спектроскопии. Экспериментально установлено, что межмолекулярные взаимодействия между ПС и C70 в растворе имеют физическую природу (электростатические и силы Ван-дер-Ваальса). Оценку взаимодействия ПС-C70 проводили в присутствии (в растворе) и отсутствии (на поверхности подложки) бензола. Полученные научные результаты представляют значительный интерес для углубленного понимания механизмов самосборки в многокомпонентных системах и открывают новые перспективы для разработки нанокомпозитных материалов, применяемых в различных направлениях нанотехнологий.
Библиографические ссылки
(1) S.B. Aziz, H.H. Rasul, S.S. Mohamme, A.W. Muhammed, P.H. Mahmood, S.Y. Omar, D.A. Hamid, I.L. Salih, K.A. Babakr, I.N. Qader, P.A. Ibrahim, R.A. Omer, A.A. Abdalrahman, S.M. Hamad, P. Aspoukeh, S.M. Hussein, The role of glycerol in modulating ionic transport and elec-trochemical performance of PEO:NaCl solid polymer electrolytes, J. Polym. Res. 32 (2025) 209. Crossref
(2) T.V. Tropina, M.V. Avdeeva, V.L. Aksenova, Temperature dependence of structural parameters of thin films of polystyrene−fullerene C60/C70 nanocomposite according to neutron reflectometry data, J. Surf. Investig. 18 (2024) 765-769. Crossref
(3) A. Sadoh, S. Hossain, S. Fereira, N.M. Ravindra, Optical properties of low-refractive index poly-mers, Mater. Sci. Eng. Int. J. 6 (2022) 68-76. Crossref
(4) A.Ö. Akar, Ü.H. Yıldız, S. Tirkeş, Ü. Tayfun, F. Hacivelioglu, Performance improvement of car-bon fiber-reinforced ABS composites by introducing fullerene nanoparticles, Polym. Int. 74 (2025) 6769. Crossref
(5) J.V. Lim, S.T. Bee, L. Tin Sin, C.T. Ratnam, Z.A. Abdul Hamid, A review on the synthesis, prop-erties, and utilities of functionalized carbon nanoparticles for polymer nanocomposites, Polymers 13 (2021) 3547. Crossref
(6) M. Shao, A. Bieliatynskyi, V.V. Trachevskyi, S. Yang, M. Ta, Multifunctional composites with a polymer matrix containing carbon nanotubes: a study of structural, physicochemical and opera-tional characteristics, Fuller. Nanotub. Carbon Nanostruct. 33 (2025) 66-76. Crossref
(7) J.F. Peter, Fullerene polymers: a brief review, J. Carbon Res. 6 (2020) 71. Crossref
(8) B. Hajduk, P. Jarka, H. Bednarski, M. Godzierz, T. Tański, M. Staszuk, P. Nitschke, B. Jarząbek, M. Fijalkowski, K. Mazik, Thermal and optical properties of P3HT:PC70BM:ZnO nanoparticles composite films, Sci. Rep. 14 (2024) 66. Crossref
(9) G.E. Satayeva, A.A. Baratova, K.E. Sakipov, A.A. Abdigapar, D.M. Sharifov, L.N. Gumilyov, Optical properties of carbon containing nanocomposite films based on the polystyrene-fullerene C60 system, Eurasian Phys. Tech. J. 20 (2023) 27-34. Crossref
(10) X. Chang, Y. Xu, M. Von Delius, Recent advances in supramolecular fullerene chemistry, Chem. Soc. Rev. 53 (2024) 47-83. Crossref
(11) U.K. Makhmanov, S.A. Esanov, D.T. Sidigaliyev, K.N. Musurmonov, B.A. Aslonov, T.A. Chuliev, Behavior of C70 fullerene in a binary mixture of xylene and tetrahydrofuran, Liquids 3 (2023) 385-392. Crossref
(12) A. Kausar, I. Ahmad, Nanocomposites of thermoplastic matrices with non-covalent fullerene re-inforcement-structural diversity, physical impact and potential, J. Thermoplast. Compos. Mater. 37 (2024) 3669-3693. Crossref
(13) U.K. Makhmanov, S.A. Esanov, B.A. Aslonov, Z. Bekmurodov, K.N. Musurmonov, A. Shukurov, A.M. Kokhkharov, Controlling the size of C70 fullerene whiskers by evaporation of solution drop-lets, Int. J. Nanosci. 68 (2023) 616. Crossref
(14) V. Schettino, M. Pagliai, G. Cardini, The infrared and Raman spectra of fullerene C70. DFT cal-culations and correlation with C60, J. Phys. Chem. A 106 (2002) 1815-1823. Crossref
(15) J. Palotas, J. Martens, G. Berden, J. Oomens, The infrared spectrum of protonated C70, Astrophys. J. Lett. 909 (2021) L17. Crossref
(16) Y.C. Lee, H.K. Wu, Y.Z. Peng, W.C. Chen, The synthesis and assembly mechanism of micro/nano-sized polystyrene spheres and their application in subwavelength structures, Micromachines 15 (2024) 841. Crossref
(17) X. Qianjin, Y.L. Xiangyun, Y. Zhang, A.B. Duan, X. Mei, Spectrum and physical properties of C70 under the external electric field, J. Clust. Sci. 31 (2020) 951-960. Crossref
(18) M.R. Pollard, K. Sparnacci, L.J. Wacker, H. Kerdoncuff, Polymer nanoparticle identification and concentration measurement using fiber-enhanced Raman spectroscopy, Chemosensors 8 (2020) 21. Crossref
(19) S. Schiemenz, R.M. Koenig, S. Stevenson, S.M. Avdoshenko, A.A. Popov, Vibrational anatomy of C90, C96, and C100 fullertubes: probing Frankenstein’s skeletal structures of fullerene head endcaps and nanotube belt midsection, Nanoscale 14 (2022) 10823-10834. Crossref
(20) N.O. Mchedlov-Petrossyan, M.O. Marfunin, N.N. Kriklya, Colloid chemistry of fullerene solu-tions: aggregation and coagulation, Liquids 4 (2024) 32-72. Crossref
(21) A.B.D. Nandiyanto, K.C.A. Henny, S.Z. Assaniyah, Z.S. Amanah, I. Kaniawati, T. Kurniawan, O. Farobie, M.R. Bilad, Chemical reaction mechanism from pyrolysis degradation of polystyrene styrofoam plastic microparticles based on FTIR and GC-MS completed with bibliometric litera-ture review to support sustainable development goals (SDGs), Moroc. J. Chem. 12 (2024) 1380-1398.
(22) M. Liu, Q. Chen, Y. Liu, J. Li, W. Xu, Z. He, Enhanced performance of hollow polystyrene spheres for inertial confined fusion by noncovalent interactions, Polym. Eng. Sci. 64 (2024) 1404-1414. Crossref
(23) M. Liu, Q. Chen, Y. Liu, J. Li, W. Xu, Z. He, Spectroscopic analysis of 1.75 MeV N⁵⁺ ions irradi-ated polystyrene film and the quest for the reaction mechanisms of fullerene and other products, Radiat. Phys. Chem. 214 (2024) 111300.
(24) M.Q. Hamzah, M.A. Agam, A.N. Tuama, M.H. Jameel, Preparation and characterization of poly-styrene nanosphere, Radiat. Phys. Chem. 2475 (2024) 090023. Crossref
(25) N. Itoh, N. Hanari, Development of a polystyrene reference material for Raman spectrometer (NMIJ RM 8158-a), Anal. Sci. 37 (2021) 1533-1539. Crossref
(26) R. Shaik, B. Ghosh, H.C. Barman, A. Rout, P.K. Padhy, Green nanotech: a review of carbon-based nanomaterials for tackling environmental pollution challenges, Nat. Environ. Pollut. Technol. 23 (2021) 1783-1794. Crossref
(27) A. Kausar, Fullerene grafting in polymeric nanocomposite-a promising strategy, Polym.-Plast. Technol. Mater. 62 (2023) 935-948. Crossref
(28) U.K. Makhmanov, B.A. Aslonov, Sh.A. Esanov, A. Shukurov, T.A. Chuliyev, Controlled synthe-sis of C70 fullerene micro/nanotubes, Rom. J. Phys. 69 (2024) 615-624.
(29) N. Kamanina, Refractive properties of conjugated organic materials doped with fullerenes and other carbon-based nano-objects, Polymers 15 (2023) 2819. Crossref
(30) S. Wang, X. Li, Y. Tu, A reflection on ‘Side-chain fullerene polyesters: a new class of high re-fractive index polymers’, Mater. Horiz. 12 (2025) 15-19. Crossref
Загрузки
Опубликован
Выпуск
Раздел
Лицензия

Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.


