Плазменные технологии в проблеме получения «более чем зеленого водорода»

Авторы

  • В.А. Жовтянский Институт газа НАН Украины, ул. Дегтяревская, 39, г. Киев, Украина
  • М.В. Остапчук Институт газа НАН Украины, ул. Дегтяревская, 39, г. Киев, Украина

DOI:

https://doi.org/10.18321/cpc478

Ключевые слова:

углеродсодержащие отходы, получение водорода, синтез-газ, плазменно-парокислородная газификация, иловые осадки станций водоочистки, резиновое крошево изношенных шин

Аннотация

Среди огневых методов переработки различных углеродсодержащих отходов в настоящем наиболее распространены высокотемпературные технологии их газификации с образованием водорода в продуктах газификации. С точки зрения перспектив декарбонизации секторов экономики результат применения таких технологий является углеродно-отрицательным, поскольку в противном случае отходы будут гнить на свалках и выделять в течение 20 лет метан – парниковый газ, который в 20 раз активнее углекислого газа с точки зрения климатических изменений. Таким образом, вклад углерода определяется как отрицательный в эквиваленте 188 кг углекислого газа на МДж по сравнению с 20 кг для водорода, получаемого с угля, и нулем для стандартного зеленого водорода. Это позволило авторам отдельных разработок отнести получаемый из отходов водород к более зеленому, чем зеленый. На примерах газификации донных илов и резинового крошева изношенных шин обсуждаются перспективы применения плазменных технологий для получения водорода применительно к задачам водородной энергетики с точки зрения их энергетической эффективности. Выполнен анализ существующих эмпирических зависимостей для определения теплофизических характеристик широкого спектра горючих веществ и выбраны наиболее приемлемые из них для тех видов углеродсодержащего сырья, которое подвергалось газификации в настоящей работе.

Библиографические ссылки

(1) Zhovtyansky VA (2003) Seminar on technological applications of plasma. Workshop on application of the low temperature plasma in the power engineering. International Conference on Physics of Low Temperature Plasma PLTP-03. Kyiv, Ukraine. P.273.

(2) Messerle VE, Sakipov ZB (1988) Solid Fuel Chemistry [Himiya tverdogo topliva] 4:123–127. (in Russian)

(3) Messerle VE (1995) State and prospects for the development of plasma technologies for oil-free ignition of coals in power engineering [Sostoyanie i perspektivyi osvoeniya plazmennyih tehnologiy bezmazutnogo vosplameneniya ugley v energetike]. Materials of the 2nd International Symposium on Theoretical and Applied Plasma Chemistry (ISTAPC), Ivanovo, Russia. P.393–395. (in Russian)

(4) Karpenko EI, Messerle VE, Ustimenko AB (1995) Thermophysics and Aeromechanics [Teplofizika i aeromekhanika] 2(2):173–187. (in Russian)

(5) Karpenko EI, Messerle VE, Trusov BG (1995) Thermal physics and aeromechanics [Teplofizika i aeromekhanika] 2(3):289–294. (in Russian)

(6) Karpenko VE, Messerle VE (1997) Introduction to plasma-energy technologies for the use of solid fuels. [Vvedenie v plazmennoenergeticheskie tehnologii ispolzovaniya tverdyih topliv] Science. Sib. ed. firm RAS, Novosibirsk, Russia. P.119. (in Russian)

(7) Zhukov MF, Karpenko EI, Peregudov VS and other (1996) Plasma oil-free kindling of boilers and stabilization of combustion of a pulverized coal torch [Plazmennaya bezmazutnaya ras-topka kotlov i stabilizatsiya goreniya pyileugolnogo fakela] Science. Sib. ed. firm RAS, Novosibirsk, Russia. P.304. (in Russian)

(8) Messerle V, Ustimenko A, Karpenko E (2004) Plasma-fuel systems for incineration and gasification of coal. International Conference on Physics of Low Temperature Plasma PLTP-03 Kyiv, Ukraine. P.10.

(9) Galvitaa V, Messerle VE, Ustimenko AB (2007) International Journal of Hydrogen Energy 32(16):3899–3906. https://doi.org/10.1088/1126-6708/2007/05/039

(10) Messerle VE, Ustimenko AB (2012) Energy technologies and resource saving [Energotekhnologii i resursosberezhenie] 4:4–7. (in Russian)

(11) Messerle VE, Mosse AL, Ustimenko AB (2016) Thermophysics and Aeromechanics 23(4):613–620. https://doi.org/10.1134/S0869864316040144

(12) Paton BE, Chernets AV, Marinsky GS, Korzhik VN, Petrov SV (2005) Electrometallurgy Today [Sovremennaya elektrometallurgiya] 3:54–63, 4:52–60. (in Russian)

(13) Chernets OV, Korzhyk VM, Marynsky GS, Petrov SV, Zhovtyansky VA (2008) Electric arc steam plasma conversion of medicine waste and carbon containing materials. XVII International Conference on Gas Discharges and their Applications, Cardiff, Wales. P.465–468.

(14) Zhovtyansky VA, Petrov SV, Kolesnyk VV, Orlyk VN, Lelyukh YuI, Nevzglyad IO, Goncharuk YuA, Yakymovych MV (2012) Energy technologies and resource saving [Energotekhnologii i resursosberezhenie] 5:15–32. (in Russian)

(15) Zhovtyansky VA, Petrov SV, Lelyukh YuI, Nevzglyad IO, Goncharuk YuA (2013) IEEE Transactions on Plasma Science 41(12):3233–3239. https://doi.org/10.1109/TPS.2013.2275936

(16) Zhovtyansky V, Valinčius V (2018) Efficiency of Plasma Gasification Technologies for Hazardous Waste Treatment. Gasification for Low-grade Feedstock. Ed. Yongseung Yun. IntechOpen, London, United Kingdom of Great Britain. P.165–189. https://doi.org/10.5772/intechopen.74485

(17) Petrov SV, Zhovtyansky VA (2019) Energyefficient steam-plasma technologies for waste processing [Energoeffektivnye paroplazmennye tekhnologii pererabotki othodov]. Naukova Dumka, Kyiv, Ukraine. 559 p. ISBN 978-966-00-1683-5. (in Russian)

(18) https://www.prnewswire.co.uk/news-releases/ways2h-shareholder-japan-blue-energy-launches-tokyo-renewable-hydrogen-production-facility-812077768.html

(19) https://www.rechargenews.com/energytransition/worlds-largest-green-hydrogenofftake-deal-signed-in-california-by-waste-toh2-start-up/2-1-1020363

(20) https://research-and-innovation.ec.europa.eu/news/all-research-and-innovation-news/mission-innovation-launches-new-global-coalition-support-clean-hydrogen-economy-2021-06-02_en#:~:text=The%20goal%20of%20the%20Clean,scale%20integrated%20hydrogen%20valleys%20worldwide

(21) Bondar AI, Lozovitskiy PS, Mashkov OA, Lozovitskiy AP (2015) Ecological sciences [Ekologicheskie nauki] 7:38–53. (in Ukrainian)

(22) Cedzynska K, Kolacinski Z, Izydorczyk M, Sroczynski W (1999) Plasma vitrification of waste incinerator ashes. International Ash Utilization Symposium. Centre for Applied Energy Research, University of Kentucky.

(23) Schilling G-D, Bonn B, Kraus U (1986) Coal gasification [Gazifikatsiya uglya] Nedra, Moscow, Russia. 175 p. (in Russian)

(24) Oboirien BO, North BC (2017) Journal of Environmental Chemical Engineering 5(5):5169–78. https://doi.org/10.1016/j.jece.2017.09.057

(25) Labaki M, Jeguirim M (2017) Environmental Science and Pollution Research 24(11):9962–9992. https://doi.org/10.1007/s11356-016-7780-0

(26) Prigogine I, Kondepudi D (2002) Modern Thermodynamics: From Heat Engines to Dissipa-tive Structures. Second Edition [Sovremennaya termodinamika: ot teplovyh dvigatelej k dissipativnym strukturam]. John Wiley & Sons, New York, USA. 461 p. ISBN 5-03-765432-1, ISBN 5-03-003538-9 (in Russian)

(27) McAllister S, Chen JY, Fernandez-Pello AC (2011) Fundamentals of combustion processes (mechanical engineering series). Springer Science and Business Media, New York, USA. Р. 15–47. https://doi.org/10.1007/978-1-4419-7943-8_2

(28) Mountouris A, Voutsas E, Tassios D (2006) Energy Conversion and Management 47(13-14):1723–1737. https://doi.org/10.1088/1475-7516/2005/10/015

(29) Zhovtyansky VA, Orlyk VN, Petrov SV, Yakymovych MV (2015) Energy Technologies and Resource Saving [Jenergotehnologii i resursosberezhenie] 4:24–46. (in Russian)

(30) Kopytov VV (2011) Biomass energy [Energiya biomassy] 6(98):29–78. (in Russian)

(31) Vatolin NA, Moiseev GK, Trusov BG (1994) Thermodynamic modeling in high temperature inorganic systems [Termodinamicheskoe modelirovanie v vyisokotemperaturnyih neorganicheskih sistemah] Metallurgy, Moscow, Russian Federation. 353 p. (in Russian)

(32) Fabry F, Rehmet C, Rohani V-J, Fulcheri L (2013) Waste and Biomass Valorization 4(3):421-439. https://doi.org/10.1007/s12649-013-9201-7

(33) Warnatz J, Maas U, Dibble RW (2006) Combustion. Physical and chemical fundamentals, modeling and simulation, experiments, pollutant formation. 4th ed. Springer Berlin Heidelberg New York, USA. 378 p. ISBN-10:3-540-25992-9. (in Russian)

(34) Ravich MB (1977) Efficiency of fuel use [Effektivnost ispolzovaniya topliva] Nauka, Moscow, Russian Federation. 258 p. (in Russian)

(35) Niessen WR (2002) Combustion and Incineration Processes. 3rd Edition. Marcel Dekker Inc, New York, USA. 708 р. https://doi.org/10.1201/9780203908365

(36) Channiwala SA, Parikh PP (2002) Fuel 81:1051–1063. https://doi.org/10.1016/S0016-2361(01)00131-4

(37) Mason DM, Gandhi K (1980) ACS Division of Fuel Chemistry 25(3):235–245. https://doi.org/10.1016/B978-0-08-023942-2.50028-6

(38) Francis HE, Lloyd WG (1983) Journal of Coal Quality 2(2):21–25.

(39) Cordero T, Marquez F, Rodriguez-Mirasol J, Rodriguez JJ (2001) Fuel 80(11):1567–1571. https://doi.org/10.1016/S0016-2361(01)00034-5

(40) Thipkhunthod P, Meeyoo V, Rangsunvigit P, Kitiyanan B, Siemanond K, Rirksomboon T (2006) Asian Journal on Energy and Environment 7(2):324–335.

(41) Parikh J, Channiwala SA, Ghosal GK (2007) Fuel 86(12-13):1710–1719. https://doi.org/10.1088/1126-6708/2006/12/029

(42) Ziatdinova DF, Kuzmin IA, Sadrtdinov AR, Timerbaev NF (2008) ChemChemTech [Izvestiya Vysshikh Uchebnykh Zavedenii, Seriya Khimiya i Khimicheskaya Tekhnologiya] 51(10):79-81. (in Russian)

(43) Shen JS, Zhu S, Liu X, Zhang H, Tan J (2010) Energy Conversion and Management 51(5):983–987. https://doi.org/10.1016/j.enconman.2009.11.039

(44) Erol M, Haykiri-Acma H, Kucukbayrak S (2010) Renewable Energy 35(1):170–173. https://doi.org/10.1016/j.renene.2009.05.008

(45) Yin CY (2011) Fuel 90(3):1128–1132. https://doi.org/10.1016/j.fuel.2010.11.031

(46) Nhuchhen DR, Abdul Salam P (2012) Fuel 99:55–63. https://doi.org/10.1016/j.fuel.2012.04.015

(47). Fedorova NI, Mikhailova ES, Ismagilov ZR (2015) Chemistry for Sustainable Development 23(2):135-138. (in Russian) https://doi.org/10.15372/KhUR20150205

(48) Ozyuguran A, Yaman S (2017) Energy Procedia 107:130–136. https://doi.org/10.13110/fairtalerevi.12.1.0149

(49) Sahu YK, Sahu PK, Chakradhari S, Patel KS (2016) Natural Resources 7:205–213. https://doi.org/10.4236/nr.2016.74019

(50) Zakaria MS, Suhaimi Hassan, Faizairi M, Nor M (2015) ARPN Journal of Engineering and Applied Sciences 10(21):10245–10248.

(51) Flaga A (2010) The aspects of sludge thermal utilization. P.9–18.

(52) Bouabid G, Wassate B, Touaj K, Nahya D, El Falaki K, Azzi M (2014) Journal of Materials and Environmental Science 5(5):1583–1590.

(53) Kim YJ, Kang HO, Qureshi TI (2005) Journal of the Chemical Society of Pakistan 27(2):124–129.

(54) Lechtenberg D (2011) Global Cement Magazine. P 36–37.

(55) Energy information and date (2007) Pyromex waste to energy. http://www.sludgefacts.org/Ref87_2.pdf

(56) Lavrenchenko GK (2010) Modern technologies of oxygenproduction from air [Sovremen-nyie tehnologii polucheniya kisloroda iz vozduha]. Materials of the international scientific and technical conference «Energy Efficiency-2010» Kiev, Ukraine. Р.54–55. (in Russian)

(57) Directive 2010/75/EU of the European Parliament and of the Council of 24 November 2010 on industrial emissions (integrated pollution prevention and control). Official Journal of the European Communities. – 2010.

(58) Mosse AL, Savchin VV (2015) Plasma technologies and devices for waste processing [Plazmennyie tehnologii i ustroystva dlya pererabotki othodov] Belarusian science, Minsk, Republic of Belarus. 559 p. ISBN 978-985-08-1856-0. (in Russian)

(59) Messerle VE, Mossé AL, Ustimenko AB, Slavinskaya NA, Sitdikov ZZ (2020) Journal of Engineering Physics and Thermophysics 93(4):987–997. https://doi.org/10.1007/s10891-020-02199-0

(60) Biberman LM, Vorobyov VS, Yakubov IT (1982) Kinetics of nonequilibrium lowtemperature plasma [Kinetika neravnovesnoj nizkotemperaturnoj plazmy] Nauka, Moscow, Russian Federation. 376 p. (in Russian)

(61) Nicolis G, Prigozhin I (1990) Exploring Complexity [Poznanie slozhnogo] Mir, Moscow, Russian Federation. 342 p. ISBN:5-03-001582-5. (in Russian)

Загрузки

Опубликован

08-02-2022

Как цитировать

Жовтянский, В., & Остапчук, М. (2022). Плазменные технологии в проблеме получения «более чем зеленого водорода». Горение и плазмохимия, 20(1), 11–32. https://doi.org/10.18321/cpc478

Наиболее читаемые статьи этого автора (авторов)