Получение и оптимизация активированного угля из растительных отходов с высокой удельной поверхностью для влагосберегающих применений в сельском хозяйстве
DOI:
https://doi.org/10.18321/cpc22(3)159-167Ключевые слова:
активированный уголь, растительные отходы, влагосберегающий субстрат, пористая структура, адсорбционные свойстваАннотация
В условиях дефицита водных ресурсов устойчивое развитие сельского хозяйства требует применения влагосберегающих технологий, включая использование влагоудерживающих субстратов на основе активированного угля. В данной работе исследованы текстурные и адсорбционные характеристики активированного угля, полученного из растительных отходов при различных массовых соотношениях сорбента и KOH (1:1, 1:2, 1:3 и 1:4). Целью исследования было определение оптимальных условий активации для создания материала с высокой удельной поверхностью и развитой пористой структурой.
Результаты исследования показали, что наибольший объем пор (1.6 см3/г) и высокая степень микропористости достигаются при соотношении 1:3, что подтверждено анализом распределения пор методами «Теория функционала плотности» и «Метод Барретта-Джойнера-Халенды». ИК-Фурье спектроскопия выявила наличие функциональных групп (O–H, C=O и C–O), способствующих влагосбережению. Дифференциальное распределение объема пор (dv(r), см3/Å/г) также продемонстрировало, что при соотношении сорбента и КОН (1:3) структура образца оптимально сочетает микропоры и мезопоры, что повышает адсорбционную способность угля.
Библиографические ссылки
(1). Chen L, Chen Q, Rao P, Yan L, Shakib A, Shen G (2018) Sustainability 10(8):2740. Crossref
(2). Eftychia GK, Roupas ND, Markou KB (2017) Minerva Med 108(2):136-146. Crossref
(3). Akhinzhanova A, Sultahan S, Tauanov Z, Mansurov Z, Capobianachi A, Amrousse R, Atamanov M, Q.-L (2023) Combustion and Flame 250:112672. Crossref
(4). El-Nakhel C, Pannico A, Graziani G, Giordano M, Kyriacou MC, Ritieni A, De Pascale S, Rouphael Y (2021) Agronomy 11:857. Crossref
(5). Wain RL, Whitford PN (1980) Annals of Appied Biology 96(2):255-260. Crossref
(6). Taurbekov A, Fierro V, Kuspanov Z, Abdisattar A, Atamanova T, Kaidar B, Mansurov Z, Atamanov M (2024) Journal of Environmental Chemical Engineering 12(5):113262. Crossref
(7). Taurbekov A, Abdisattar A, Atamanov M, Yeleuov M, Daulbayev C, Askaruly K, Kaidar B, Mansurov Z, Castro-Gutierrez J, Celzard A, Fierro V, Atamanova T (2023) Journal of Composites Science 7(10):444. Crossref
(8). Halka M, Klimek-Chodacka M, Smoleń S, Baranski R, Ledwożyw-Smoleń I, Sady W (2018) Physiol. Plant 164:290-306. Crossref
(9). Taurbekov A, Abdisattar A, Atamanov M, Kaidar B, Yeleuov M, Joia R, Amrousse R, Atamanova T (2023) Journal of Composites Science 7(11):452. Crossref
(10). Lesbayev B, Rakhymzhan N, Ustayeva G, Maral Y, Atamanov M, Auyelkhankyzy M, Zhamash A (2024) Journal of Composites Science 8(2):74. Crossref
(11). Naderi M, Tarleton S (2015) Progress in Filtration and Separation, Academic Press: 585-608. Crossref
(12). Yang SX, Fu SJ, Wang ML (1991) AnalChem 63(24):2970-2973. Crossref
(13). Sabitov A, Atamanov M, Doszhanov O, Saurykova K, Tazhu K, Kerimkulova A, Orazbayev A, Doszhanov Y (2024) Molecules 29(16):3786. Crossref
(14). Ilyin YV, Kudaibergenov KK, Sharipkhanov SD, Mansurov ZA, Zhaulybayev AA, Atamanov MK (2023) Eurasian Chemico-Technological Journal 25(1):33-38. Crossref
(15). Azat S Development of the technology for fusicoccin preparation using nanocarbon sorbents and study of its biological and cytotoxic activity: PhD Dissertation, Almaty: Al-Farabi Kazakh National University, Kazakhstan. Р. 109.
(16). Bardestani R, Patience GS, Kaliaguine S (2019) The Canadian Journal of Chemical Engineering 97(11):2781-2791. Crossref
(17). McLaren RL, Laycock CJ, Brousseau E, Owen GR (2021) New Journal of Chemistry 45(27):12071-12080. Crossref
Загрузки
Опубликован
Выпуск
Раздел
Лицензия

Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.