Production of porous nickel from Ni/Cu alloy by selective electrochemical etching

Authors

  • M.T. Artykbaeva Al-Farabi Kazakh National University, Almaty, Kazakhstan; Institute of Combustion Problems, Almaty, Kazakhstan
  • M.A. Eleuov Institute of Combustion Problems, Almaty, Kazakhstan; Satbayev University, Almaty, Kazakhstan
  • G.T. Smagulova Al-Farabi Kazakh National University, Almaty, Kazakhstan; Institute of Combustion Problems, Almaty, Kazakhstan
  • R.E. Beisenov Institute of Combustion Problems, Almaty, Kazakhstan; Satbayev University, Almaty, Kazakhstan

Keywords:

композиционные углерод-полимерные волокна, полиметил- метакрилат, электроспиннинг, карбонизованная рисовая шелуха.

Abstract

Currently, obtaining porous frame nanostructures from conductive materials and semiconductors is an important area of nanotechnology. Porous metal structures are of growing technological interest because of the many beneficial physical properties such as low mass density, high surface area, and high mechanical strength. Porous materials also have the potential to improve electrical, thermal, optical, or reactive properties, which leads to many possible applications. Nanoporous materials have unique surface, structural, and bulk properties, leading to applications in various fields, such as ion exchange, separation, catalysis, sensors, biological molecular isolation, and purification. The work has developed methods for obtaining porous nickel frame structures by the method of selective electrochemical etching from Ni/Cu alloy. To determine the effect of the ratio of the starting components (nickel and copper) on the morphology of porous nickel after electrochemical etching, the alloys were investigated in the following ratios Ni:Cu – 90:10, 80:20, and 60:40. It was found that the ratio of nickel and copper in the composition of the original alloy affects the structure and morphology of porous nickel. To study the structure and morphology of the obtained images of porous nickel, modern analysis methods were used, such as scanning electron (scanning) microscopy and the method of low-temperature nitrogen adsorption (BET method).

References

(1). Bryce C.T., Stephen A.S. III. Nanoporous metal foams // Angewandte Chemie. International Edition. – 2010. – Vol. 49, № 27. – P. 4544-4565. https://doi.org/10.1002/anie.200902994

(2). Duan G., Cai W., Li Y. Transferable ordered Ni hollow sphere arrays induced by electrodeposition on colloidal monolayer // J. Phys. Chem. B – 2006. – Vol. 110, №. 14. – P. 7184-7188. https://doi.org/10.1021/jp057421t

(3). Perekrestov V.I. Self-organization of copper nanosystems under Volmer–Weber conditions during quasi-equilibrium condensation // Physica B. – 2013. – Vol. 411. – P. 140-148. https://doi.org/10.1016/j.physb.2012.11.036

(4). Li M. Fabrication of nanoporous copper ribbons by dealloying of Al-Cu alloys // J. Porous Mater. – 2012. – V. 19, № 5. – P. 791-796. https://doi.org/10.1007/s10934-011-9532-3

(5). Chazalviel J.-N. Electrochemical preparation of porous semiconductors: from phenomenology to understanding // Materials Science and Engineering. – 2000. – Vol. 69. – P.1-10. https://doi.org/10.1016/S0921-5107(99)00285-8

(6). Canham L.T. Silicon quantum wire array fabricaiton by electrochemical dissolution of wafers // Applied Physicals Letters – 1990. – Vol. 57, № 10. – P.1046-1048. https://doi.org/10.1063/1.103561

(7). Erlebacher J., Aziz M. J., Karma A., Dimitrov N., Sieradzki K. Evolution of nanoporosity in dealloying // Nature. – 2001. – Vol. 410, № 6827. – P. 450-453. https://doi.org/10.1038/35068529

(8). Ding Y. and Erlebacher J. Nanoporous metals with controlled multimodal pore size distribution // Journal of the American Chemical Society. – 2003. – Vol. 125, № 26. – P. 7772-7773. https://doi.org/10.1021/ja035318g

(9). Hakamada M., Nakano H., Furukawa T., Takahashi M., and Mabuchi M. Hydrogen storage properties of nanoporous palladium fabricated by dealloying // Journal of Physical Chemistry C. – 2010. – Vol. 114, № 2. – P. 868-873. https://doi.org/10.1021/jp909479m

(10). Zhang Q. and Zhang Z. On the electrochemical dealloying of Al-based alloys in a NaCl aqueous solution // Physical Chemistry Chemical Physics. – 2010. – Vol. 12, № 7. – P. 1453-1472. https://doi.org/10.1039/B919313H

(11). Chang J.-K., Hsu S.-N., Sun I.-W., and Tsai W.-T. Formation of nanoporous nickel by selective anodic etching of the nobler copper component fromelectrodeposited nickelcopper alloys // Journal of Physical Chemistry C. – 2008. – Vol. 112, № 5. – P. 1371-1376. https://doi.org/10.1021/jp0772474

(12). Wu C.M., Fan C.Y., Sun I.W., Tsai W.T. and Chang J.K. Improved pseudocapacitive performance and cycle life of cobalt hydroxide on an electrochemically derived nano-porous Ni framework // Journal of Power Sources. – 2011. – Vol. 196, № 18. – P. 7828-7834. https://doi.org/10.1016/j.jpowsour.2011.03.083

(13). Nikiforova T.G., Savel’Eva T.V., and Datskevich O.A. Catalytic activity of electrolytic palladium deposits on porous nickel substrates // Russian Journal of Applied Chemistry. – 2011. – Vol. 84, № 8. – P. 1347-1353. https://doi.org/10.1134/S107042721108009X

(14). Koboski K.R., Nelsen E.F. and Hampton J.R. Hydrogen evolution reaction measurements of dealloyed porous NiCu // Nanoscale Research Letters. – 20113. – Vol. 8, № 1. – Article 528. https://doi.org/10.1186/1556-276X-8-528

(15). Erlebacher J. An atomistic description of dealloying: porosity evolution, the critical potential, and rate-limiting behavior // Journal of the Electrochemical Society. – 2004. – Vol. 151, № 10. – P. C614–C626. https://doi.org/10.1149/1.1784820

(16). Chang J.-K., Hsu S.-N., Sun I.-W., Tsai W.-T. Formation of nanoporous nickel by selective anodic etching of the nobler copper component from electrodeposited nickel-copper alloys // Journal of Physical Chemistry C. – 2008. – Vol. 112, № 5. – P. 1371–1376. https://doi.org/10.1021/jp0772474

(17). Chang Jeng-Kuei, Hsu Shih-Hsun, Sun I-Wen, Tsai Wen-Ta. Formation of nanoporous nickel by selective anodic etching of the nobler copper component from electrodeposited nickelcopper alloys // Journal of Physical Chemistry C. – 2008. – Vol. 112(5). – P. 1371-1376. https://doi.org/10.1021/jp0772474

(18). Zhang J., Bian H., Li Z., Tsang C.K., Lee C., Cheng H., Shu S., Yang Yang L., Lu J. Electrochemical dealloying using pulsed voltage waveforms and its application for supercapacitor electrodes // Journal of Power Sources. – 2014. – Vol. 257. – P. 374-379. https://doi.org/10.1016/j.jpowsour.2013.11.039

(19). Sun L., Chien CL., Searson P.C. Fabrication of nanoporous nickel by electrochemical dealloying // Chem. Mater. – 2004. – Vol. 16. – P. 3125-3129. https://doi.org/10.1021/cm0497881

(20). Sechi E., Vacca A., Mascia M., Palmas S. Nickel-based nanoporous electrodes for water treatment // Chemical Engineering Transactions. – 2016. – Vol. 47. – P. 97-102.

(21). Benjamin E. Peecher and Jennifer R. Hampton. Dealloying behavior of NiCo and NiCoCu thin fi lms // International Journal of Electrochemistry. – 2016. – Vol. 2016, Article ID 2935035, 10 pages https://doi.org/10.1155/2016/2935035

(22). Xian He Meng, Chu Bin Wan, Su Ye Yu, Xiao Ping Jiang, Xin Ju. Nickel/Porous Carbon Composite Derived from Bimetallic MOFs for Electrical Double-Layer Supercapacitor Application // Int. J. Electrochem. Sci. – 2018. – Vol. 13. – P. 8179-8188. https://doi.org/10.20964/2018.08.49

(23). Chao Teng, Jie He, Lili Zhu, Lianbing Ren, Jiwei Chen, Mei Hong and Yong Wang. Fabrication and Characterization of Monodisperse Magnetic Porous Nickel Microspheres as Novel Catalysts // Nanoscale Research Letters. – 2015. – Vol. 10. – P. 384-395. https://doi.org/10.1186/s11671-015-1088-8

(24). Chihiro Hiraiwa. Application of Ni Porous Metal to Solid Oxide Fuel Cells // Sci. Technical Review. – 2016. – Vol. 83. – P. 59-65.

(25). Michał Grdeń, Mohammad Alsabet, Gregory Jerkiewicz. Surface Science and Electrochemical Analysis of Nickel Foams // ACS Applied Materials & Interfaces. – 2012. – Vol. 4(6). – P. 3012-3021. https://doi.org/10.1021/am300380m

(26). Materials and Technologies for Energy Effi ciency / Ed. A. Mendez-Vila, Brown Waler Press, 2015. – 277 p.

(27). Ding Yi, Y‐J. Kim, and Jonah Erlebacher. Nanoporous gold leaf: “Ancient technology”/ advanced material // Advanced Materials. – 2004. – Vol. 16, № 21. – P. 1897-1900. https://doi.org/10.1002/adma.200400792

(28). Senior N.A., and Newman R.C. Synthesis of tough nanoporous metals by controlled electrolytic dealloying // Nanotechnology. – 2006. – Vol. 17, № 9. – P. 2311-2326. https://doi.org/10.1088/0957-4484/17/9/040

(29). Pickering H.W., and Wagner C. Electrolytic dissolution of binary alloys containing a noble metal // Journal of the Electrochemical Society. – 1967. – Vol. 114, № 7. – P. 698-706. https://doi.org/10.1149/1.2426709

(30). Katagiri A., and Nakata M. Preparation of a High Surface Area Nickel Electrode by Alloying and Dealloying in a ZnCl2 NaCl Melt // Journal of The Electrochemical Society. – 2003. – Vol. 150, № 9. – P. C585-C590. https://doi.org/10.1149/1.1595662

(31). Forty A.J. Corrosion micromorphology of noble metal alloys and depletion gilding // Nature. – 1979. – Vol. 282(5739). – P. 597–603. https://doi.org/10.1038/282597a0

(32). Erlebacher J., Aziz M.J., Karma A., Dimitrov N., Sieradzki K. Evolution of nanoporosity in dealloying // Nature. – 2001. – Vol. 410(6827). – P. 450-3. https://doi.org/10.1038/35068529

Published

2018-12-10

How to Cite

Artykbaeva, M., Eleuov, M., Smagulova, G., & Beisenov, R. (2018). Production of porous nickel from Ni/Cu alloy by selective electrochemical etching. Combustion and Plasma Chemistry, 16(3-4), 226–234. Retrieved from https://cpc-journal.kz/index.php/cpcj/article/view/218

Most read articles by the same author(s)

<< < 1 2