ТЕОРЕТИЧЕСКИЕ ИССЛЕДОВАНИЯ СИНТЕЗА МЕТАСТАБИЛЬНЫХ (НЕРАВНОВЕСНЫХ) ПРОДУКТОВ В ВОЛНЕ БЕЗГАЗОВОГО ГОРЕНИЯ

Authors

  • V. K. Smolyakov Tomsk Research Center, Siberian Branch, Russian Academy of Sciences, Akademicheskii pr. 10/3, Tomsk, 634021 Russia
  • O. V. Lapshin Tomsk Research Center, Siberian Branch, Russian Academy of Sciences, Akademicheskii pr. 10/3, Tomsk, 634021 Russia

Keywords:

metastable phase, chemical interaction, burning velocity

Abstract

The first part of the article considers the obtaining of nonequilibrium products in the combustion waves. The basic theoretical concepts are provided for the synthesis of metastable phases in binary systems. The multiple wave process in eutectic systems is explained by the properties of synthesis and the decomposition of unstable phases. This phenomenon is observed in the systems, the equilibrium phase diagram of which has a simple eutectic form, i.e., does not have the stable phases: Al-Ge, Al-Si, Al-S, etc. During slow cooling the final products represent the initial materials, during fast cooling there is the quenching of metastable phases produced in a combustion wave, in particular for the Al-Ge system. These facts indicate that this multiple wave process is caused by the synthesis and disintegration of nonequilibrium phases. There is a temperature above which the wave synthesis of metastable products takes place and below of which the wave disintegration occurs. In this case, the reaction product can be either stable or metastable depending on the initial conditions of the mixture and the combustion parameters. The thermodynamic analysis shows that the probability of producing a metastable product in the system increases with decreasing a scale of heterogeneity. At the mode change point of the chemical interaction there is a sudden change in the combustion characteristics: the temperature, the intensity of chemical conversion and the combustion rate. The calculated and known experimental data are compared. The method was developed to estimate the effective thermodynamic and kinetic constants, as well as the model parameters using experimental data. The second part of the article considers the development and study of a mathematical model for solid flame combustion in a two-component gasless system that forms a metastable phase. The model includes the heat balance equation and the chemical reaction equation that takes into account the processes of synthesis and decomposition of a metastable phase, as well as the boundary and initial conditions. The mathematical model was numerically studied. The characteristic modes were defined for wave processes. Three characteristic modes were found: separation, fusion and extinction. The modes differ in the arrangement of the synthesis fronts and the disintegration of products. The self-oscillation modes in this system are shown to be separated by a temperature boundary of the phase stability. In addition, the self-oscillation mode can not be realized when the synthesis (during bursts) and decomposition (in the period of depressions) coexist. The self-oscillation mode was found to exist in the area of the product decomposition as an intermediate mode between the stationary modes.

References

(1) Алдушин А.П., Каспарян С.Г., Шкадинский К.Г., Распространение фронта экзо- термической реакции в конденсированных смесях, образующих двухфазные продукты. - В кн.: Горение и взрыв. Материалы IV Всесоюзного симпозиума по горению и взрыву. - М.: Наука, 1977. - С. 207 – 212.

(2) Лапшин О.В., Смоляков В.К. К теории горения тонкопленочных структур // Физика горения и взрыва. - 2013. - № 6 (49). - С.47-52.

(3) Концепция развития СВС как области научно-технического прогресса. – Черноголовка: «Территория», 2003. - 368 с.

(4) Амосов А.П., Боровинская И.П., Мержанов А.Г. Порошковая технология самораспространяющегося высокотемпературного синтеза материалов. Учеб. пособ./ Под науч- ной редакцией В.Н. Анциферова. – М.: Машиностроение –1, 2007. – 567 с.

(5) Боровинская И.П. Образование тугоплавких соединений при горении гетерогенных конденсированных систем. – В сб.: Горение и взрыв. Материалы IV Всесоюзного симпозиума по горению и взрыву. - М.: Наука, 1977. - С. 207 – 212.

(6) Рогачев А.С., Пономарев В.И. Фазо- и структурообразование в СВС-процессах. - В кн.: Самораспространяющийся высокотемпературный синтез: теория и практика. – Черно- головка: «Территория», 2001. - 432 с.

(7) Мягков В.Г., Жигалов В.С. Твердо- фазные реакции и фазовые превращения в слоистых наноструктурах. - Новосибирск: изд- во СО РАН, 2011. - 155 с.

(8) Мержанов А.Г. Самораспространяющийся высокотемпературный синтез: двадцать лет поисков и находок. - Черноголовка: ИС- МАН, 1989. - 91 с.

(9) Merzhanov A.G. Ten research directions in the future of SHS// Int. Journal of Self- Propagating High-Temperature Synthesis – 1995. - No.4 (4). - P. 323-350.

(10) Мягков В.Г., Быкова Л.Е., Бондаренко Г.Н. Множественный самораспространяющийся высокотемпературный синтез и твердо- фазные реакции в двухслойных тонких плен- ках // Журнал экспериментальной и теоретической физики.-1999.-В. 5 (115).-С. 1756-1764.

(11) Lapshin O.V., Smolyakov V. K. On Possibility of Formation of Metastable Compounds in a Wave of Gasless Combustion // Int. Journal of Self-Propagating High-Temperature Synthesis.- 2014. -No.3 (23). -Pp. 133-137. https://doi.org/10.3103/S1061386214030078

(12) Lapshin O.V., Smolyakov V.K. Mathematical formalism of the theory multiple (reiterated) self-propagating high-temperature synthesis// International Journal of Self-Propagating High Temperature Synthesis. – 2016.- No.1 (25). - Pp. 1 – 4. https://doi.org/10.3103/S1061386216010076

(13) Смоляков В.К., Лапшин О.В. К теории многократного прохождения неизотермического волнового процесса // Физика горения и взрыва.-2015.-№5 (51).-С. 66 – 69.

(14) Браун М., Доллимор Д., Галвей А. Реакции твердых тел. - М.: Мир, 1983. - 360 с.

(15) Хенней Н. Химия твердого тела. - М.: Мир, 1971. - 224 с.

Published

2024-10-29

How to Cite

Smolyakov, V. K., & Lapshin, O. V. (2024). ТЕОРЕТИЧЕСКИЕ ИССЛЕДОВАНИЯ СИНТЕЗА МЕТАСТАБИЛЬНЫХ (НЕРАВНОВЕСНЫХ) ПРОДУКТОВ В ВОЛНЕ БЕЗГАЗОВОГО ГОРЕНИЯ. Combustion and Plasma Chemistry, 15(3), 191–199. Retrieved from https://cpc-journal.kz/index.php/cpcj/article/view/257