МРНТИ 67.09.00

https://doi.org/10.18321/cpc23(3)323-333

Механохимическая обработка природного сырья и техногенных отходов для получения теплоизоляционных материалов

А.Е. Матен^{1,2*}, Б.С. Садыков¹, А.Б. Артықбаева^{1,2}, А.С. Әділхан², А.О. Жапекова^{1,3}, А.Е. Баққара^{1,2}

¹Институт проблем горения, ул. Богенбай батыра, 172, Алматы, Казахстан ²Казахский национальный университет им. аль-Фараби, пр. аль-Фараби, 71, Алматы, Казахстан ³Казахский национальный женский педагогический университет, ул.Гоголя, 114, Алматы, Казахстан

Информация о статье

Получено 04.06.2025

Получено в исправленном виде 01.07.2025

Принято 15.08.2025

Ключевые слова:

диатомит; золошлак; теплоизоляционные материалы; механохимическая обработка; композитная структура; графит; утилизация отходов; переработка отходов

АННОТАЦИЯ

Разработка энергоэффективных и экологически безопасных строительных материалов на основе природного и техногенного сырья представляет актуальную задачу современных материаловедческих исследований. В данной работе представлены составы теплоизоляционных материалов на основе диатомита и золошлака, активированных методом механохимической обработки. Исследовано влияние содержания графита (10%, 20 %) на теплопроводность, прочность и водопоглощение композитов. Наилучшие характеристики зафиксированы для золошлака с добавлением 10% графита: теплопроводность – 0,1136 Вт/(м·К), прочность – 19,86 МПа. Минимальное значение теплопроводности для диатомита составило 0,157 Вт/(м·К), при этом наблюдалось ухудшение прочностных характеристик. Полученные материалы обладают сбалансированными эксплуатационными свойствами и могут быть применены в строительстве с целью повышения энергоэффективности и рационального использования минеральных ресурсов.

1. Введение

Низкоэнергозатратные и экологически безопасные теплоизоляционные материалы являются ключевым элементом стратегии углеродной нейтральности строительного сектора [1]. Среди минеральных ресурсов, пригодных для этой цели, диатомит выделяется развитой микропористой структурой (удельная поверхность $20-35 \, \text{м}^2 \cdot \text{г}$) и малой объемной массой (120-300 кг/м³), что обеспечивает низкий коэффициент теплопроводности без применения органических вспенивателей [2]. Потенциальным минеральным наполнителем-партнером для диатомита служат золошлаковые отходы тепловых электростанций, содержащие до 60% реакционноспособного аморфного SiO_2 и Al_2O_3 [3]. Использование техногенных алюмосиликатов позволяет снизить себестоимость композиции и одновременно решить задачу утилизации промышленных отходов.

Главными ограничениями природного диатомита и золошлака остаются недостаточная механическая прочность и высокая гигроскопичность, что препятствует их применению во влажных средах [4]. Перспективным путем устранения этих недостатков является механохимическая обработка (МХО) - высокоэнергетическое тонкое измельчение, сопровождаемое дефектогенезом, аморфизацией и генерацией активных поверхностных центров без высокотемпературного обжига [5]. Применение центробежно-планетарной мельницы «NXQM-2A» (Китай) обеспечивает удельную энергоемкость воздействия до 8-10 кДж∙г и допускает точное регулирование времени, скорости и массового соотношения «порошок/шаровая загрузка», что критически важно для воспроизводимости фазо-морфологических преобразований [6]. Дополнительная модификация активированного сырья путем введения графита (5-10%) рассматривается как способ уменьшения инфра-

© The Author(s). This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

^{*}Corresponding author: A.E. Maten; E-mail address: maten02@list.ru

красного компонента теплопередачи за счет эффекта экранирования, повышения гидрофобных свойств материала, обусловленных низкой поверхностной энергии углерода, стабилизации дисперсного состояния за счет образования углеродной нанопленки на гранулах [7]. Публикуемые данные указывают, что синергия МХО и углеродного модифицирования позволяет снижать коэффициент теплопроводности композитов до 0,10-0,12 Вт/м·К при росте предела прочности до 20-40 МПа [8-12]. Однако систематических исследований влияния дозы графита и режимов активации на структурные и эксплуатационные характеристики природно-техногенных алюмосиликатов в настоящее время не представлено.

Новизна работы заключается в разработке составов шихты и условий синтеза в режиме СВС теплоизоляционных материалов на основе модифицированных компонентов шихты. Модифицирование сырьевых материалов проводилось в режиме МХО, обеспечивающем высокий уровень активности получаемых смесей на основе минерального и техногенного сырья. Впервые были разработаны составы для изготовления теплоизоляционного материала на основе модифицироаванных частиц диатомита и золошлака, что подтверждено патентом [13].

Цель настоящего исследования — разработать высокоэффективный теплоизоляционный композиционный материал на основе модифицированного природного диатомита и золошлаковых отходов путем их механохимической активации в планетарной мельнице, а также установить взаимосвязь между режимами обработки, содержанием графита, фазо-морфологическими преобразованиями активированной алюмосиликатной матрицы и тепло- и прочностными характеристиками полученных образцов, что позволит обосновать технологические параметры, обеспечивающие минимальную теплопроводность, повышенную прочность и низкое водопоглощение материала.

2. Экспериментальная часть

В качестве исходных материалов использовались обожженная диатомитовая крошка марки «А» (фракция 0-0,2 мм) и золошлак ТЭЦ-2 (г. Алматы). Перед использованием диатомит и золошлак (ЗШ) подвергались просеву для удаления посторонних включений и выравнивания гранулометрического состава. Согласно данным рентгенофазового анализа, диатомит содержит 88,5%

 SiO_2 , 5,8% $NaAl_3Si_3O_{11}$ и 2,8% $(Fe_4Si)_{0\cdot 4}$; золошлак представлен в основном муллитом (70%) и кварцем (29,1%).

Механохимическая обработка осуществлялась в планетарной шаровой мельнице «NXQM-2A» (Китай) со стальными шарами диаметром 5 мм при скорости вращения 400 об/мин, ускорении 40g и потребляемой мощности 1,5 кВт·ч. Продолжительность обработки составляла 10, 20 и 30 мин при соотношении массы порошка к массе шаров Мп/Мш = 1/2 и 1/4. В состав вводился графит (10%, 20%) в качестве модифицирующей добавки.

Выбор диапазона времени обусловлен тем, что при обработке свыше 30 мин наблюдается агломерация частиц, приводящая к ухудшению дисперсности и снижению эффективности модификации. Для исключения перегрева реакционной смеси использовался прерывистый режим работы с охлаждением камеры между циклами. Обработка проводилась в сухих условиях, влияние влажности не зафиксировано. Структурные изменения оценивались методами рентгенофазового анализа и сканирующей электронной микроскопии.

Выбор модификатора обоснован анализом литературных данных относительно изменений в структуре частиц при разрушении и потенциальных возможностей их модификации.-

Рентгенофазовый анализ (РФА) проводился на дифрактометре DW-27 mini (Drawell, Китай) с использованием СиК α -излучения (λ = 1,5406 Å). Сканирование выполнялось в диапазоне 2 θ = 10-80 $^{\circ}$ при шаге 0,02 $^{\circ}$ и скорости сканирования 2 $^{\circ}$ /мин.

Для идентификации фаз использовалась база данных PDF-4+ (ICDD, 2023) с применением программного обеспечения, входящего в комплект поставки прибора.

Проведена полуколичественная фазовая оценка на основе анализа относительных интенсивностей характеристических дифракционных пиков.

Микроструктурные исследования порошков проводились с использованием сканирующего электронного микроскопа Quanta 3D 200i Dual System (FEI, США). Съемка осуществлялась в режиме высокого вакуума при ускоряющем напряжении 20 кВ с использованием детектора вторичных электронов (SE). Предварительное покрытие образцов проводилось без напыления, поскольку исследуемые материалы обладали достаточной проводимостью для получения качественного сигнала.

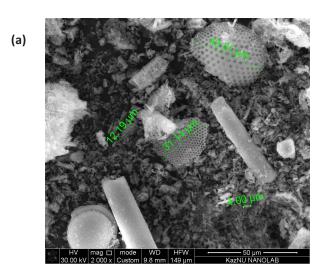
Таблица 1. Насыпная плотность диатомита и техногенных отходов в зависимости от параметров МХО

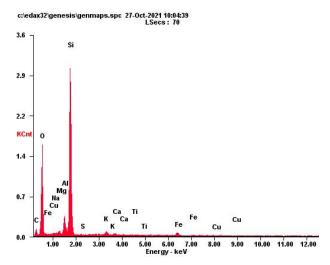
Насыпная плотность, г/см³							
	Время активации, мин						
	0	1	.0	2	.0	3	80
Мп/Мш	-	1/2	1/4	1/2	1/4	1/2	1/4
диатомит	0,34	1,14	1,19	1,26	1,20	1,11	1,18
золошлак	0,81	1,00	1,20	0,95	1,15	0,91	1,09

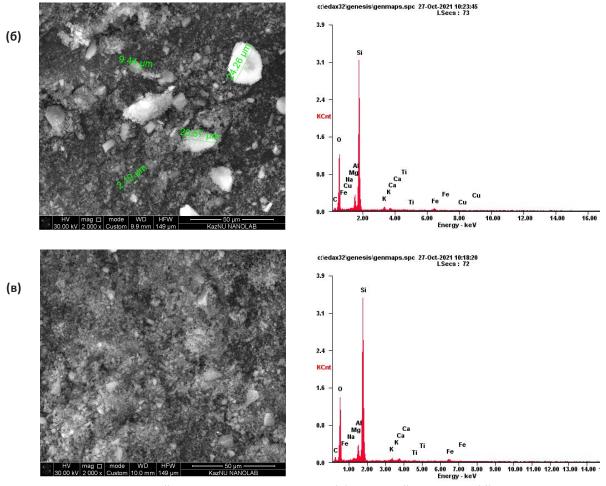
2. Результаты и обсуждение

В результате механохимической обработки были получены данные по насыпной плотности диатомита и техногенного отхода при различных режимах воздействия (табл. 1).

После 20 мин обработки диатомит характеризуется повышенной насыпной плотностью, при этом наблюдается тенденция к снижению плотности при увеличении количества размольных шаров. В случае золошлака, напротив, увеличение времени механохимической обработки приводит к снижению его насыпной плотности.


Полученные результаты указывают на существенные изменения структуры исследуемых порошков под действием механохимического воздействия, что, в свою очередь, отражается на их активности.


Эффективность модификации порошков зависит от морфологических особенностей частиц, полученных в результате механохимической обработки. После обработки происходит не только измельчение диатомита, но и более глубокое разрушение поверхностного слоя частиц изучаемого материала.


На рис. 1 представлены СЭМ-изображения диатомита при Мп/Мш = $\frac{1}{2}$, 20 мин МХО. На

СЭМ-снимке исходных порошков (рис. 1а) наблюдаются характерные пористые фрустулы округлой и продолговатой формы (4-44 мкм) с чистой поверхностью и выраженной микропористостью. После МХО (рис. 1б) наблюдаются изменения морфологии частиц: частичная деструкция фрустул, уменьшение их размеров до 2-20 мкм, поверхность стала рыхлой и неоднородной, что указывает на активацию поверхности. На рис. 1в видно, что добавление графита усиливает разрушение структуры и уменьшает размеры частиц, что свидетельствует об эффективной механоактивации и увеличении удельной поверхности.

На рис. 2 представлены дифрактограммы образцов диатомита после механохимической обработки (20 мин) с введением графита и без него. Анализ результатов показывает отсутствие значительных различий в фазовом составе: основные дифракционные пики соответствуют аморфной и слабокристаллической форме диоксида кремния (SiO₂) с признаками кристобалита и кварца. Такая стабильность фазового состава свидетельствует о преимущественно физической природе взаимодействия между компонентами при МХО, обусловленную диспергированием без химической модификации.

Рис. 1. СЭМ-снимки и элементный анализ природного сырья: (а) исходный диатомит; (б) диатомит после 20 мин МХО; (в) диатомит+графит после 20 мин МХО.

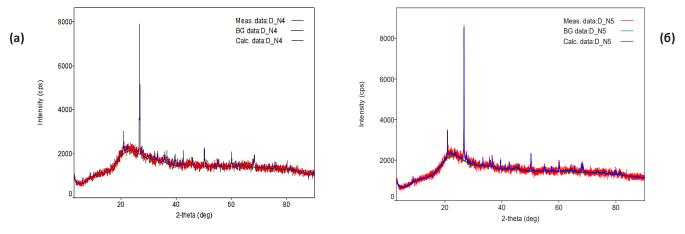
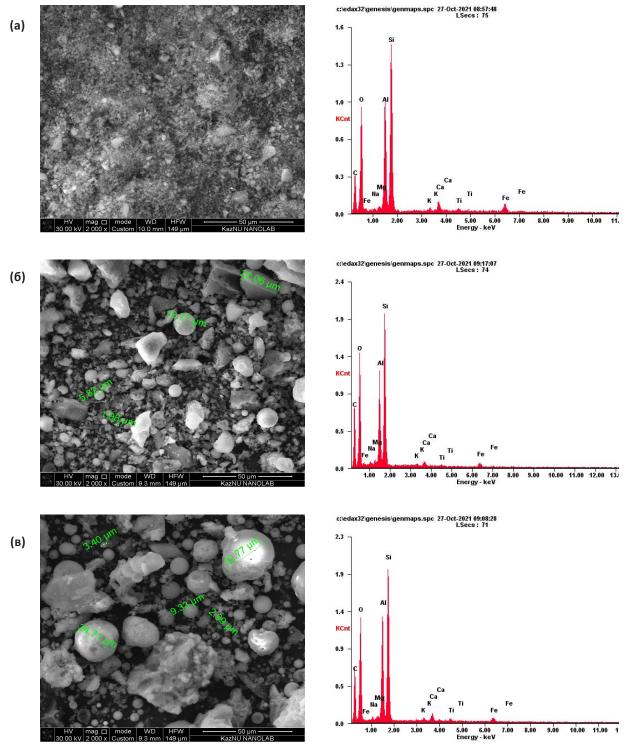
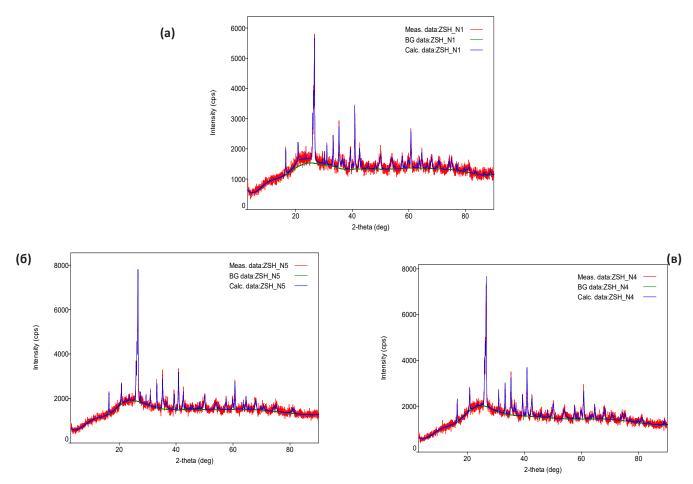


Рис. 2. Дифрактограмма порошков диатомита: (а) исходный диатомит; (б) диатомит + графит после 20 мин МХО.


Для исходных техногенных отходов проведены аналогичные исследования с использованием электронной микроскопии, состояние до и после МХО. СЭМ-изображения показывают, что в исходном состоянии частицы золошлака имеют размеры до 30 мкм и характеризуются сферической, пористой структурой (рис. 3а). После МХО

наблюдалось структурное изменение поверхности частиц с одновременным уменьшением их размера. На рис. Зб отчетливо видно, что поверхность частиц после МХО приобрела более пластинчатую структуру. Проведенная обработка привела к разрушению поверхности частиц, что проявилось в изменениях их формы и текстуры.

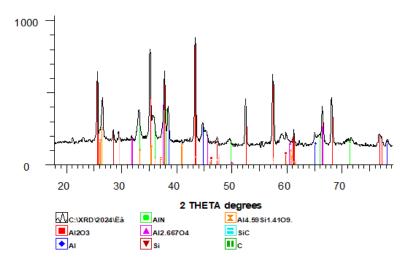

На рис. 4 представлены результаты исследования методом рентгенофазового анализа (РФА). Согласно данным РФА, после МХО (рис. 4б) в образце наблюдается появление новых фаз — $Al_{4-66}Si_{1-39}O_{9-75}$ и SiO_2 , а также аморфного углерода, что свидетельствует о фазовых преобразованиях, вызванных активацией. Это указывает не только на увеличение дисперсности и разрушение исход-

ной структуры, но и на модификацию поверхности частиц при обработке с добавлением графита.

Для получения теплоизоляционных материалов на основе диатомита и золошлака был применен метод самораспространяющегося высокотемпературного синтеза (СВС) — энергоэффективная технология, основанная на локализованной экзотермической реакции между компонентами.

Рис. 3. СЭМ-снимки и элементный анализ ЗШ: (а) исходный ЗШ; (б) ЗШ после 20 мин МХО; (в) ЗШ+графит после 20 мин МХО.

Рис. 4 Рентгенограмма 3Ш: (а) в исходном состоянии; (б) 3Ш после 20 мин МХО; (в) после 20 мин МХО с добавлением графита.


В процессе горения диатомита в исходном состоянии максимальный тепловой эффект достигает ~1150 °C. После МХО происходит снижение температуры T_{max} до 1090 °C, что связано с измельчением, дефектообразованием и увеличением теплоотвода. При добавлении 20% графита температура вновь повышается до ~1120 °C, что, вероятно, обусловлено экзотермическими взаимодействиями углерода с активными компонентами матрицы и фазовой рекристаллизацией, сопровождающейся дополнительным тепловыделением. Укороченный период зажигания в модифицированных образцах связан с тепловыми потерями на разрушение карбидной оболочки алюминиевых частиц и перераспределением тепла по углеродной фазе.

В отличие от диатомитовых композиций, для золошлака добавление графита оказывает противоположный эффект: наблюдается повышение температуры T_{max} до ~1170 °C при 10% С и до ~1250 °C при 20% С. При этом образец, подвергшийся МХО без графита, демонстрирует наименьшую термостойкость (~1100 °C). Это указывает на

то, что в золошлаковой матрице основным механизмом повышения огнестойкости является экранирующее действие графита, которое снижает тепловое излучение, замедляет локальный перегрев и способствует сохранению структурной целостности.

Таким образом, результаты термических испытаний демонстрируют, что для диатомитовых систем ключевым фактором является механохимическая активация, обеспечивающая равномерное воспламенение и понижение Т_{тах}, в то время как для золошлаковых композиций решающим фактором выступает графитовое модифицирование (оптимально ≥10%), повышающее термостойкость за счет экранирования тепловых потоков. Недостаточное или избыточное содержание графита в обеих системах приводит к перераспределению пористости, образованию теплопроводящих каналов и, как следствие, снижению огнестойкости.

На рентгенограмме (рис. 5) представлены результаты фазового анализа диатомитового образца, подвергнутого механохимической обработке

Рис. 5. Дифрактограмма теплоизоляционных материалов на основе диатомита после механохимической обработки с добавлением графита.

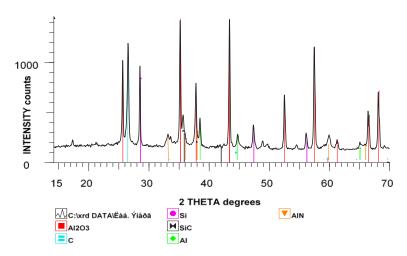


Рис.6. Дифрактограмма теплоизоляционных материалов на основе ЗШ после МХО с добавлением графита.

с добавлением графита. В составе идентифицированы следующие фазы: AIN, Al_2O_3 , Si, SiC, C, а также комплексное соединение $Al_{4\cdot003}Si_{1\cdot4109}$. Образование нитридов и карбидов свидетельствует об интенсивных химических взаимодействиях в условиях МХО. Наличие остаточного графита указывает на неполное протекание реакций и присутствие примесей. Полученные данные подтверждают формирование многофазной системы с новыми функциональными свойствами.

Рентгенофазовый анализ образца золошлака после механохимической обработки с добавлением графита (рис. 6) выявил формирование фаз Al₂O₃, AlN, Si, C, Al, а также соединений SiC. Их присутствие свидетельствует о протекании интенсивных химических взаимодействий в процессе СВС с участием графит-модификатора и азота в воздухе, приводящих к образованию карбидных и нитридных соединений. Формирование данных фаз указывает на развитие термостойкой многофазной структуры с потенциально электроактивными свойствами, что подчеркивает роль графита как активного модификатора в создании функциональных композитных материалов.

В табл. 2 представлены значения водопоглощения, прочности и теплопроводности СВС-материалов на основе диатомита и техногенного золошлака. Результаты исследования показывают, что МХО способствует снижению теплопроводности и водопоглощения диатомита, сопровождаясь повышением прочности (с 5,6 до 23,2 МПа). Активированный диатомит демонстрирует максимальную прочность на сжатие – 23,2 МПа, коэффициент теплопроводности – 0,203 Вт/м·К, водопоглащение - 23,32%. В то же время теплоизоляционные материалы на основе диатомита с добавлением 10% графита обладают пониженной теплопроводностью (0,157 Вт/(м·К)), уменьшенным водопоглощением (17,17 %) и прочностью на сжатие 13,4 МПа.

Таблица 2. Показатели водопоглощаемости,	прочности и	теплопроводности	СВС-материалов	на	основе
диатомита и техногенного золошлака					

Nº	Название	Теплопроводимость, (Вт/м·K)	Прочность, (МПа)	Водопоглощение, (%)
1	Диатомит исх	0,337	5,60	33,07
2	Диатомит MXO	0,203	23,2	23,32
3	Диатомит +10% С	0,157	13,4	17,17
4	Диатомит + 20% С	0,315	4,90	32,62
5	3Ш исх	0,175	7,63	14,70
6	3Ш МХО	0,126	25,08	10,26
7	3Ш + 10% С	0,114	19,86	16,16
8	3Ш + 20% C	0,120	14,63	19,04

Теплоизоляционные материалы на основе золошлака обладают показателями прочности в диапазоне от 7,63 до 25,08 МПа. Образцы с исходными частицами золошлака характеризуются коэффициентом теплопроводности 0,175 Вт/м·К, прочностью 7,63 МПа и водопоглащением 14,70%. Образцы на основе ЗШ после МХО имеют коэффициент теплопроводности 0,126 Вт/м·К, наивысший показатель прочности – 35,53 МПа и водопоглащение 10,26%. Теплоизоляторы на основе 10% графита обладают следующими показателями: коэффициент теплопроводности – 0,114, прочность – 19,86 МПа. Теплоизоляторы на основе 3Ш + 20% графита демонстрируют следующие характеристики: коэффициент теплопроводности – 0,120 Bт/м·К, прочность – 14,63 МПа, водопоглащение – 19,04%. Таким образом, МХО оказывает положительное влияние на структуру и термостойкость золошлака, обеспечивая формирование эффективного теплоизоляционного материала с оптимальным сочетанием прочностных и теплофизических характеристик.

Таким образом, механохимическая активация и углеродное модифицирование оказывают разнонаправленное влияние на свойства диатомитовой и золошлаковой матриц. Углерод способствует формированию устойчивой пористой структуры и снижает теплопроводность. Полученные теплоизоляционные материалы подходят для высокотемпературных условий.

3. Заключение

Разработаны составы теплоизоляционных материалов на основе природного диатомита и техногенного золошлака, активированных методом механохимической обработки. Установлено,

что введение 10% графита в золошлаковую систему приводит к снижению теплопроводности до 0,114 Вт/(м·К), сохранив высокую прочность – 19,86 МПа и умеренное водопоглощение – 16,16%. Для диатомита минимальное значение теплопроводности достигается при добавлении 10% графита (0,157 Вт/(м·К)), однако прочность в этом случае снижается до 13,4 МПа. Таким образом, механохимическая обработка в сочетании с модифицированием графитом позволяет целенаправленно регулировать теплофизические и прочностные характеристики композиционных материалов, что подтверждает эффективность предложенного подхода для создания теплоизоляционных изделий на основе природного и техногенного сырья.

Благодарность

Работа выполнена при поддержке Комитета науки МНВО РК, АР19680089 «Разработка технологии получения теплоизоляционных кирпичей на основе природного сырья и техногенных отходов для промышленного и гражданского строительства».

Список литературы (ГОСТ)

- [1]. Liu M., Zhu P., Yan X., Li H., Chen X. The application of solid waste in thermal-insulation materials: a review // J. Renew. Mater. − 2024. − Vol. 12, № 2. − P. 329–347.
- [2]. Raza M., Farhan A., Abu-Jdayil B. Lignocellulose-based insulation materials: sustainable solutions for energy efficiency // Int. J. Innov. Food Technol. 2024. Vol. 24. P. 100844.
- [3]. Lee M.G., Huang Y., Shih Y.F. и др. Mechanical

- and thermal insulation performance of wastediatomite cement mortar // J. Mater. Res. Technol. – 2023. – Vol. 25. – P. 4739–4748.
- [4]. Martínez V., Stolar T., Karadeniz B. и др. Advancing mechanochemical synthesis by combining milling with different energy sources // Nat. Rev. Chem. 2023. Vol. 7. P. 51–65.
- [5]. Bakkara A., Sadykov B., Artykbaeva A. и др. Energy-intensive materials with mechanically activated components // ChemEngineering. 2023. Vol. 7, № 5. Р. 97.
- [6]. Xu H., Wang H., Zhang Z. и др. High-efficiency Al-based multicomponent composites for low-temperature hydrogen production // Int. J. Hydrogen Energy. 2023. T. 48, № 67. C. 26260—26275.
- [7]. Dudina D.V., Bokhonov B.B. Materials development using high-energy ball milling: a review // J. Compos. Sci. – 2022. – Vol. 6, № 7. – P. 188.
- [8]. Adeniyi A.G., Abdulkareem S.A., Adeyanju C.A., Ighalo J.O. Recycling biochar and aluminium filings into thermally conducting polystyrene composites // J. Polym. Environ. – 2022. – Vol. 30. – P. 3150–3162.
- [9]. Liu Z.H., Wang F., Deng Z.P. Thermal-insulation composite based on SiO₂ aerogel // Constr. Build. Mater. – 2021. – Vol. 286. – P. 122921.
- [10]. Медведева Г.А., Ахметова Р.Т., Юсупова А.А. Утилизация золошлаковых отходов в производстве серобетона // Соврем. наукоемкие технол. 2021. № 11. С. 43–47.
- [11]. Делицын Л.М., Власов А.С., Рябов Ю.В. Инновационная технология комплексной переработки золы ТЭС // В кн.: Комплексное освоение техногенных образований. Челябинск: ЮУрГУ, 2021. С. 103—108.
- [12]. Мофа Н.Н., Мансуров З.А. Механохимический синтез поверхностных наноструктур для композиционных материалов // Материалы Междунар. конф. по механохимическому синтезу и спеканию. 2021. С. 67–68.
- [13]. Патент на полезную модель РК №9822. Композиция для изготовления теплоизоляционного материала / Баққара А.Е., Садыков Б.С., Хайруллина А.С., Матен А.Е., Жапекова А.О.

References

- M. Liu, P. Zhu, X. Yan, et al. The Application of Solid Waste in Thermal-Insulation Materials: A Review.
 J. Renew. Mater. 12 (2024) 329–347. https://doi. org/10.32604/jrm.2023.045381.
- [2]. M. Raza, A. Farhan, B. Abu-Jdayil. Lignocellulose-

- Based Insulation Materials: Sustainable Solutions for Energy Efficiency. Int. J. Innov. Food Tech. 24 (2024) 100844. https://doi.org/10.1016/j. ijft.2024.100844.
- [3]. M.G. Lee, Y. Huang, Y.F. Shih, et al. Mechanical and Thermal Insulation Performance of Waste-Diatomite Cement Mortar. J. Mater. Res. Technol. 25 (2023) 4739–4748. https://doi.org/10.1016/j. jmrt.2023.06.246.
- [4]. V. Martínez, T. Stolar, B. Karadeniz, et al. Advancing Mechanochemical Synthesis by Combining Milling with Different Energy Sources. Nat. Rev. Chem. 7 (2023) 51–65. https://doi.org/10.1038/s41570-022-00442-1.
- [5]. A. Bakkara, B. Sadykov, A. Artykbaeva, et al. Energy-Intensive Materials with Mechanically Activated Components. ChemEngineering 7 (2023) 97. https:// doi.org/10.3390/chemengineering7050097.
- [6]. H. Xu, H. Wang, Z. Zhang, et al. High-Efficiency Al-Based Multicomponent Composites for Low-Temperature Hydrogen Production. Int. J. Hydrogen Energy 48 (2023) 26260–26275. https:// doi.org/10.1016/j.ijhydene.2023.03.338.
- [7]. D.V. Dudina, B.B. Bokhonov. Materials Development Using High-Energy Ball Milling: A Review. J. Compos. Sci. 6 (2022) 188. https://doi. org/10.3390/jcs6070188.
- [8]. A.G. Adeniyi, S.A. Abdulkareem, C.A. Adeyanju, et al. Recycling Biochar and Aluminium Filings into Thermally Conducting Polystyrene Composites. J. Polym. Environ. 30 (2022) 3150–3162. https:// doi.org/10.1007/s10924-022-02413-5.
- [9]. Z.H. Liu, F. Wang, Z.P. Deng. Thermal-Insulation Composite Based on SiO₂ Aerogel. Constr. Build. Mater. 286 (2021) 122921. https://doi. org/10.1016/j.conbuildmat.2021.122921.
- [10]. G.A. Medvedeva, R.T. Akhmetova, A.A. Yusupova. Utilization of Ash-and-Slag Waste in Sulfur Concrete Production. Sovrem. Naukoyomk. Tekhnol. 11 (2021) 43–47.
- [11]. L.M. Delitsyn, A.S. Vlasov, Yu.V. Ryabov. Innovative Technology for Full-Scale Processing of TPP Ash Waste. In Kompleksnoe Osvoenie Tekhnogennykh Obrazovaniy, South Ural State University, Chelyabinsk, 2021, pp. 103–108.
- [12]. N.N. Mofa, Z.A. Mansurov. Mechanochemical Synthesis of Surface Nanostructures for Composite Materials. In Proc. Int. Conf. "Mechanochemical Synthesis and Sintering", 2021, pp. 67–68.
- [13]. A.E. Bakkara, B.S. Sadykov, A.S. Khairullina, et al. Patent for Utility Model RK No. 9822. Composition for the Production of Thermal Insulation Material.

Сведения об авторах

А.Е. Матен — магистрант 2-го курса КазНУ им. аль-Фараби, кафедра химической физики и материаловедения, лаборант Института проблем горения, Алматы, Казахстан

E-mail: maten02@list.ru ORCID: 0009-0000-2957-3329

Б.С. Садыков – PhD, внс Института проблем горения, Алматы, Казахстан

E-mail: sadykoff.baha89@gmail.com ORCID: 0000-0002-4739-3636

А.Б. Артықбаева – доктарант 2-го курса КазНУ им. аль-Фараби, кафедра химической физики и материаловедения, МНС Института проблем горения, Алматы, Казахстан

E-mail: aidaartykbayeva@gmail.com ORCID: 0000-0001-5334-2379

А.С. Әділхан — студент 4-го курса КазНУ им. аль-Фараби, кафедра химической физики и материаловедения, Алматы, Казахстан E-mail: aliyaadilkhan70@gmail.com

А.О. Жапекова – PhD, внс Института проблем горения, ст. преподаватель КазНацЖенПУ, Алматы, Казахстан

E-mail: anarazhapekova83@gmail.com

ORCID: 0000-0002-0842-3804

А.Е. Баққара — PhD, внс Института проблем горения, доцент КазНУ им. аль-Фараби, кафедра химической физики и материаловедения, Алматы, Казахстан

E-mail: bakkara_ayagoz@mail.ru ORCID: 0000-0001-7336-126X

Mechanochemical Processing of Natural Raw Materials and Technogenic Wastes to Obtain Thermal Insulation Materials

A.E. Maten^{1,2*}, B.S. Sadykov¹, A.B. Artykbayeva^{1,2}, A.S. Adilkhan², A.O. Zhapekova^{1,3}, A.E. Bakkara^{1,2}

¹Institute of Combustion Problems, Bogenbai Batyr st., 172, Almaty, Kazakhstan

ABSTRACT

Re-using ash-slag waste from coal-fired power plants for thermal-insulation products offers a viable route to waste valorisation and energy saving. In this work, natural diatomite and ash-slag waste were jointly mechanochemically activated for 20 min in a «NXQM-2A» centrifugal planetary mill (powder-to-ball mass ratio 1:4) and simultaneously modified with graphite. High-energy milling destroyed residual crystalline phases, increased the amorphous aluminosilicate fraction and preserved an intrinsic pore network, which lowered the thermal conductivity of the composites to 0.10-0.12 W/m·K while raising bulk density and compressive strength (diatomite: 5.6-23.2 MPa; fly ash: 10.5-37.6 MPa). Addition of 10 wt % graphite further enhanced the hydrophobicity of diatomite – reducing water uptake by about 50% produced the minimum λ -value (0.11 W/m·K) for the ash-slag system. Conversely, 20 wt% graphite generated excessive macroporosity, lowering strength to 4-2 MPa and diminishing moisture resistance. Thus, mechanochemical activation combined with moderate graphite dosing markedly improves the thermal (lower λ) and mechanical (higher strength) performance of diatomite- and ash-based composites while simultaneously decreasing water absorption. The results confirm the feasibility of upcycling ash-slag waste into high-efficiency insulation materials suitable for building envelopes and other thermal-barrier applications.

Keywords: diatomite, ash-slag, thermal insulation materials, mechanochemical treatment, composite structure, graphite, waste utilization, waste recycling.

Табиғи шикізаттар мен техногендік қалдықтарды механохимиялық өңдеу арқылы жылу оқшаулағыш материалдар алу

А.Е. Матен^{1,2*}, Б.С. Садыков¹, А.Б. Артықбаева^{1,2}, А.С. Әділхан², А.О. Жапекова^{1,3}, А.Е. Баққара^{1,2}

¹Жану проблемалары институты, Бөгенбай батыр к., 172, Алматы, Казахстан

АҢДАТПА

ЖЭС-тің күл-қож қалдықтарын жылу оқшаулағыш материалдарда қайта пайдалану – қалдықтарды кәдеге жарату мен энергияны үнемдеудің тиімді жолы. Осы зерттеуде табиғи диатомит пен күл-қож қалдықтары «NXQM-2A» центрифугалық-планетарлық диірменінде 20 мин бойы (ұнтақ/шар массалық қатынасы 1/4) механохимиялық активтендіріліп, бір мезгілде 5-20 мас.% графитпен модификацияланды. Жоғары энергиялы ұнтақтау кристаллдық фазаларды бұзып, алюмосиликаттардың аморфты үлесін арттырды және түйірішілік кеуектік құрылымды сақтады. Нәтижесінде композициялардың жылуөткізгіштік коэффициенті 0,10-0,12 Вт/ м-К дейін төмендеп, тығыздығы мен сығу беріктігі артты (диатомитте 5,6-дан 23,2 МПа-ға, ұшпа күлде 10,5тен 37,6 МПа-ға дейін). 10 мас.% графит қосу диатомиттің гидрофобтығын күшейтіп, су сіңіргіштігін шамамен 2 есе азайтты және күл-қож композитында ең төменгі λ (0,11 Вт/м⋅К) мәнін қамтамасыз етті. Ал 20 мас.% графит шамадан тыс макрокеуектілік түзіп, беріктікті 4-12 МПа-ға дейін түсіріп, ылғалға төзімділікті әлсіретті. Осылайша, механохимиялық активтендіру мен орташа мөлшердегі графиттік модификация диатомит пен күл-қож негізіндегі материалдардың жылу өткізгіштік (төмен λ) және механикалық (жоғары беріктік) қасиеттерін айтарлықтай жақсартып, су сіңіргіштігін азайтады. Алынған нәтижелер күл-қож қалдықтарын жоғары тиімді жылу оқшаулағыш бұйымдарға айналдырудың жүзеге асырылатынын дәлелдейді және әзірленген композициялар ғимарат конструкциялары мен басқа да жылу тосқауыл жүйелерінде қолдануға перспективалы екенін көрсетеді.

Түйін сөздер: диатомит, күл-қож қалдықтары, жылу оқшаулағыш материалдар, механохимиялық өңдеу, композитті құрылым, графит, қалдықтарды утилизациялау, қалдықтарды қайта өңдеу.

²Al-Farabi Kazakh National University, Al-Farabi ave., 71, Almaty, Kazakhstan

³Kazakh National Women's Teacher Training University, Gogol st., 114, Almaty, Kazakhstan

²Әл-Фараби атындағы Қазақ ұлттық университеті, әл-Фараби д., 71, Алматы, Казахстан

³Қазақ ұлттық қыздар педагогикалық университеті, Гоголь к., 114, Алматы,Казахстан