**МРНТИ 44.31.39** 

https://doi.org/10.18321/cpc23(3)215-232

# Технологии хранения водорода: достижения, проблемы и перспективы развития

Б.Т. Лесбаев<sup>1,2\*</sup>, Н.Б. Рахымжан<sup>1</sup>, М. Ауельханкызы<sup>1,2</sup>, Г.С. Устаева<sup>1,2</sup>, А.Б. Толынбеков<sup>1,2</sup>, А. Жамаш<sup>1,2</sup>, Лю Ян<sup>2</sup>, М. Нажипкызы<sup>1,2</sup>

<sup>1</sup>Институт проблем горения, ул. Богенбай батыра, 172, Алматы, Казахстан <sup>2</sup>Казахский национальный университет им. аль-Фараби, пр. аль-Фараби, 71, Алматы, Казахстан

# Информация о статье

Получено 13.08.2025

Получено в исправленном виде 15.09.2025

Принято 25.09.2025

#### Ключевые слова:

хранение водорода; интерметаллиды; металлогидриды; нанопористый углерод; эффект «перетока» (spillover)

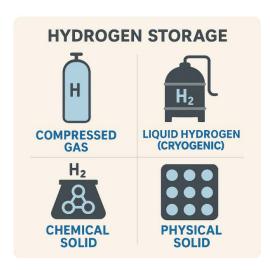
### *RNJATOHHA*

Водород рассматривается как один из наиболее перспективных энергоресурсов XXI века благодаря экологической чистоте и потенциалу интеграции в устойчивую энергетику. Основным препятствием на пути его широкого внедрения остается отсутствие эффективных и безопасных технологий хранения. В данной работе представлен обзор современных методов хранения: в виде сжатого газа, жидкого водорода, в металлогидридах и наноструктурированных материалах. Рассмотрены преимущества и ограничения традиционных технологий, показана перспективность нанопористого углерода, включая материалы из биомассы, обладающего высокой удельной поверхностью и возможностью функциональной модификации. Приведены экспериментальные данные, демонстрирующие достижение емкости свыше 10 мас.% при оптимальных условиях. Обоснована необходимость комплексного подхода к развитию водородной энергетики, включающего совершенствование существующих систем и применение устойчивых технологий на основе возобновляемого сырья.

### 1. Введение

Производство энергии является ключевым фактором социально-экономического прогресса, однако добыча и использование ископаемого топлива сопровождаются загрязнением окружающей среды, увеличением выбросов парниковых газов и необратимыми изменениями глобального климата. Нарушение экологического и климатического баланса диктует необходимость перехода к альтернативным, экологически чистым источникам энергии. В последние годы страны с сильной экономикой продвигают идею перехода к «зеленой энергетике», в которой водородное топливо рассматривается как одно из приоритеных направлений. С 2017 года реализуется программа Европейского Союза Fuel Cells and Hydrogen Joint Undertaking, в рамках которой к 2023 году было освоено около 1,8 млрд евро. Министерство энергетики США ежегодно выделяет порядка 120 млн долларов на программу Hydrogen and Fuel Cells Program. В Японии действует программа Strategic Road Map for Hydrogen

and Fuel Cells, целью которой является увеличение использования водорода до 10 млн тонн к 2050 году. С 2021 года реализуется программа Global Programme for Hydrogen in Industry, инициированная Организацией Объединенных Наций по промышленному развитию (UNIDO) совместно с правительством Китая и Международным центром водородной энергетики (Пекин). Программа направлена на содействие внедрению водородных технологий в промышленности развивающихся стран и стран с переходной экономикой [1]. В Европейском Союзе в рамках соглашения «Fit for 55: Delivering on the proposals» планируется к 2030 году довести производство «зеленого» водорода до 5,6 млн тонн и сократить выбросы парниковых газов на 55%. В Республике Казахстан утверждена Концепция развития водородной энергетики до 2030 года (приказ Министра энергетики от 27 сентября 2024 г.), где водород рассматривается как ключевой элемент в переходе к низкоуглеродной экономике, способный обеспечить декарбонизацию промышленных процессов и транспорта [2].


© The Author(s). This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

<sup>\*</sup>Corresponding author: B. Lesbayev; E-mail address: lesbayev@mail.ru

Интерес к водороду как к экологически чистому топливу обусловлен его универсальностью: можно использовать для производства энергии, транспортировать как энергоноситель, а также применять для аккумулирования избыточной энергии. В рамках глобальной стратегии устойчивого развития энергетики водород как вторичный энергоноситель расширяет возможности долговременного хранения избыточной электроэнергии, вырабатываемой альтернативными источниками энергии (солнечной, ветровой, геотермальной и атомной), путем получения экологически чистого водорода методом электролиза воды [3]. Одним из главных факторов, сдерживающих широкое применение водорода в качестве альтернативного топлива, остается отсутствие безопасных, экономически доступных и эффективных систем его хранения.

С развитием нанотехнологий значительно возрос интерес к системам хранения водорода с использованием наноструктурированных твердотельных носителей. В настоящее время рассматриваются в качестве таких носителей: нанопористый углерод, наноматериалы на основе углерода; металлоорганические каркасы (MOF); сложные химические гидриды, клатраты, амиды, цеолиты, а также интерметаллиды [4]. Перечисленные материалы могут обеспечивать хранение водорода за счет процессов хемосорбции или физической сорбции [5]. Разработка легких и недорогих твердотельных систем хранения водорода на основе наноструктурированных материалов с высокой емкостью и быстрой кинетикой процессов сорбции и десорбции может решить проблему применения водородных топливных элементов в бортовых приложениях. В данной статье излагается современное состояние методов хранения водорода и рассматриваются достижения, проблемы и перспективы их использования.

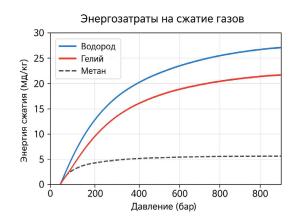
По сравнению с традиционными видами топлива, водород обладает самой высокой плотностью энергии на единицу массы, однако из-за низкой объемной плотности при нормальной температуре окружающей среды и давления он характеризуется низкой энергетической плотностью на единицу объема. Это создает значительные сложности при разработке систем его хранения. В первую очередь, из-за низкой температуры ожижения, высокой взрывоопасности, негативного воздействия водорода на свойства материалов, из которых изготавливаются емкости для хранения. В настоящее время применяются следующие базовые принципы хранения водорода: в виде сжатого газа; в виде жидкого водорода в криогенной среде; в виде химического или физического хранения в твердотельных носителях (рис. 1) [6, 7].



**Рис. 1.** Базовые принципы хранения водорода: сжатый газ, жидкий водород в криогенной среде, химическое и физическое хранение в твердотельных носителях.

Согласно требованиям Министерства энергетики США (DOE), для масштабного внедрения водорода в качестве топлива необходимо создание систем хранения водорода, соответствующих следующим критериям: водородоемкость системы – не менее 7,5 мас.%; температура выделения – в диапазоне 60-120 °C; рабочее давление – 35-70 МПа. Эти требования к системам хранения водорода зависят от конкретной сферы применения. Наиболее распространенным методом при температуре окружающей среды является хранение водорода в виде сжатого газа в баллонах высокого давления. Этот метод используется как в промышленности, так и в транспортной сфере. К его основным преимуществам относятся: высокая скорость заправки, что особенно актуально для мобильных приложений; наличие развитой инфраструктуры и совместимость с коммерческим оборудованием; отлаженные процессы технического обслуживания, хранения и транспортировки. Однако данный метод имеет и серьезные недостатки: низкая объемная плотность энергии (даже при 700 бар энергетическая плотность на единицу объема в 3-4 раза ниже, чем у бензина); значительная масса баллонов (особенно металлических); высокая стоимость композитных материалов; риск утечки и потенциальная опасность взрыва при механических повреждениях или нарушении условий эксплуатации.

# 2. Хранение водорода под высоким давлением


В настоящее время для хранения водорода под давлением используются различные типы баллонов, отличающихся по конструкции, материалам и техническим характеристикам.

Баллоны типа I (стальные и алюминиевые) используются с конца XIX века для хранения различных газов, включая водород, которые могут выдерживать давление до 300 бар. Однако из-за значительной массы (от 50 до 500 кг) они обладают низкой гравиметрической плотностью водорода, что ограничивает их применение в мобильных приложениях. Такие баллоны используются в основном для длительного хранения в стационарных условиях, например, на водородных заправочных станциях [8, 9]. В 1990-х годах бурное развитие технологии производства углеродных волокон позволило наладить изготовление баллонов типа II (стальные с углеродным волокном), которые при меньшем весе по сравнению с баллонами типа I обеспечивают надежность и повышенную прочность систем хранения водорода при умеренных давлениях до 300 бар [10].

В начале 2000-х годов начали производить композитные баллоны типа III с металлическим вкладышем, позволяющие хранить водород при давлениях от 350 до 700 бар при существенном снижении веса по сравнению с баллонами типов I и II, что предоставило возможность их широкого применения в мобильных приложениях [11, 12]. В 2000-е годы начались разработка и внедрение баллонов типа IV, отличающихся наличием внутренней полимерной оболочки и полным композитным армированием. Благодаря полимерному вкладышу и обмотке из углеродного волокна баллоны типа IV значительно легче предыдущих аналогов, обладают идеальной герметичностью, устойчивостью к механическим повреждениям, коррозии и выдерживают давления до 700 бар. С 2010 года баллоны типа IV широко применяются в водородных автомобилях и контейнерах для хранения и перевозки водорода. Несмотря на преимущества баллонов типа IV, их использование сопряжено с определенными недостатками: уязвимость полимерного вкладыша к повреждениям при резком снижении давления, низкая теплопроводность, приводящая к значительному повышению температуры внутри баллона при быстрой заправке водородом, ограниченная термостойкость при резких перепадах температур и высокая стоимость производства [13, 14].

На стадии активных исследований находятся баллоны типа V, полностью композитные и неимеющие внутренней оболочки (лайнера). Они рассматриваются как перспективное решение для авиации, аэрокосмической техники и транспорта, где критически важны вес и объем. Первые прототипы были разработаны в 2014 году компанией Composite Technology Development (США) для применения в аэрокосмической отрасли. Несмотря на высокую прочность и легкость, такие баллоны требуют дальнейшего технологического развития и снижения стоимости [15-16].

Вопреки значительным достижениям в разработке методов хранения водорода в виде сжатого газа под высоким давлением, данный способ остается непрактичным для использования в транспортных средствах. Это обусловлено тем, что, несмотря на создание композитных баллонов, способных выдерживать давление 700 МПа и выше, плотность хранимого водорода остается низкой. Анализ зависимости энергии сжатия от давления для различных газов показывает (рис. 2), что компримирование водорода требует примерно в 8 раз более высоких затрат энергии, чем метана, что существенно влияет на экономику использования сжатого водорода.



**Рис. 2.** Сравнительный анализ зависимости энергии сжатия от давления для различных газов.

Перспективы и основные направления дальнейшего развития систем хранения водорода под высоким давлением связаны с необходимостью повышения безопасности и энергоэффективности путем увеличения удельной массы хранимого водорода. К важным направлениям, требующим дальнейших исследований, являются разработки в области создания новых высокопрочных композитных материалов для баллонов, обладающих малой массой и высокой устойчивостью к циклическим нагрузкам и коррозии. Особое внимание

исследователям необходимо уделить также вопросам снижения себестоимости производства баллонов, пригодных для эксплуатации при высоких давлениях, и безопасной интеграции их в мобильные приложения с применением сенсорных технологий и систем автоматического управления.

### 3. Технология хранения сжиженного водорода

В 1898 году Джеймс Дьюар впервые осуществил сжижение водорода при температуре ниже -252,9 °C и продемонстрировал, что сжиженный водород занимает в 800 раз меньше объема, чем водород при нормальных условиях. Это примерно в 1,8 раза меньше объема водорода, сжатого до 700 бар. В отличие от хранения водорода под высоким давлением, хранение водорода в жидком виде благодаря значительному уменьшению объема является одним из наиболее эффективных методов компактного хранения водорода, особенно в случаях, когда необходимо транспортировать или хранить большие объемы. Значительный технологический прогресс в данной области был достигнут в середине XX века в ходе развития ракетной техники. С 1980-х годов ведутся интенсивные исследования по применению жидкого водорода в транспортных приложениях. К преимуществам сжиженного хранения водорода по сравнению с компримированным хранением относится возможность достижения относительно высокой объемной (≈70 кг/м³) и энергетической (≈2,4 kWh/л) плотностей при атмосферном давлении, что облегчает проблемы разработки технических решений и быстрой дозаправки транспортных средств. Наряду с вышеуказанными преимуществами, технология хранения жидкого водорода сопряжена с рядом серьезных недостатков. Водород необходимо поддерживать в жидком состоянии при температурах ниже -253 °C, что требует создания высокоэффективной системы термоизоляции с применением дорогостоящего специализированного оборудования. Высокая энергоемкость процесса сжижения, которая расходует до 30-40% энергии, содержащейся в сжиженном водороде, а также существенные потери водорода из-за испарения при длительном хранении, требующие регулярного обслуживания элементов безопасности, остаются основными препятствиями для широкого внедрения технологии хранения жидкого водорода. Исследования совершенствования систем жидкого хранения водорода продолжаются и последние достижения в данной области отражены в статьях [17-19].

# 4. Технология хранения водорода о использованием металлогидридов

Химические методы хранения водорода основаны на формировании химической связи водорода с твердыми веществами с образованием гидридов. Данный подход рассматривается как один из наиболее перспективных для создания безопасных и эффективных систем хранения. Основным преимуществом металлогидридных систем хранения водорода является их высокая безопасность, однако недостаток связан с тем, что большинство гидридов, обладающих значительной водородной емкостью, требуют высоких температур для процессов адсорбции и десорбции, что ограничивает их применение в мобильных приложениях. Исключение составляют гидриды на основе интерметаллических соединений, способные эффективно функционировать при комнатной температуре и умеренных давлениях. Однако их водородная емкость невелика - порядка 1,5-2 мас.% [20]. Существенно более высоких гравиметрических емкостей можно достичь в сложных гидридах [21]. Например, теоретическая емкость LiBH₄ составляет 18,5 мас.% водорода [22]. Следует отметить, что для практических применений LiBH₄ имеет ряд недостатков: высокая температура (>400 °C) и давление (>350 бар) процессов гидрирования и дегидрирования, а также слабая устойчивость к влаге и кислороду. В настоящее время разработаны металлогидриды, которые могут функционировать в умеренных условиях температур от 0 до 100 °C и давлениях от 1 до 40 бар на основе высокоэнтропийных сплавов [23]. Основным недостатком большинства металлогидридов является медленная кинетика процессов адсорбции и десорбции водорода, ограниченная плохой теплопередачей и загрязнением гидрида [24]. Улучшение кинетики процессов адсорбции и десорбции водорода металлогидридами может быть достигнуто за счет модификации химического состава путем легирования или с помощью присутствия катализаторов. Современные достижения в этой области подробно обсуждаются в ряде обзорных работ [25-28].

Благодаря высокой распространенности низкой стоимости и высокой емкости магний рассматривается как один из наиболее перспективных гидридообразующих материалов для хранения водорода. Металлогидриды на его основе обладают высокой теоретической водородной емкостью — до 7,6 мас.% и способны функционировать при умеренных давлениях, что делает

их перспективными материалами для хранения водорода. Однако практическое применение магниевых гидридов ограничивается высокой рабочей температурой (300-400 °C) и низкой скоростью процессов гидрирования и дегидрирования. Поэтому исследования, направленные на улучшение перечисленных характеристик MgH<sub>2</sub>, представляют большой интерес. В работе [29] методом механической активации были получены гидридно-интерметаллидные композиты MgH<sub>2</sub>+FeTi и изучены их адсорбционные характеристики в зависимости от состава и дополнительного легирования никелем. Установлено, что благодаря каталитическому действию n-Ni в композите состава MgH<sub>2</sub>+10 мас.% FeTi+5 мас.% n-Ni водородоемкость повышается на 5 мас.%, а температура десорбции водорода снижается до 60 °C. В работе [30] гидротермальным методом был синтезирован титанат циркония (ZrTiO<sub>4</sub>), который вводили в MgH<sub>2</sub> в количестве 7 мас.%. Результаты показали, что введение ZrTiO₄ снижает начальную температуру дегидрирования MgH<sub>2</sub> на 70 °C по сравнению с чистым MgH<sub>2</sub>, подвергнутым аналогичному механическому измельчению (248,8°C), и существенно улучшает кинетику как адсорбции, так и десорбции водорода. Композит MgH<sub>2</sub>-7 мас.% ZrTiO<sub>4</sub> способен выделять 6,3 мас.% Н<sub>2</sub> при 300 °C в течение 5 мин и поглощать 5,5 мас.% Н<sub>2</sub> при 125 °C в течение 10 мин, что свидетельствует о высокой эффективности предлагаемого подхода для повышения водородной емкости MgH<sub>2</sub>. В работе [31] исследовали влияние легирования гидрида магния многокомпонентным сплавом TiCrNbH<sub>x</sub>. Добавление 20 мас.% TiCrNbH позволило добиться поглощения водорода уже при комнатной температуре, а температура начала дегидрирования составила 163 °C. При температуре 230 °C данный композит выделял до 5,8 мас.% водорода за 700 сек, сохраняя обратимую водородную емкость на уровне 4,98 мас.% после 100 циклов сорбции-десорбции. В работе [32] рассмотрено каталитическое влияние различных массовых концентраций тетрахлорида гафния (HfCl₄) на температуру разложения и кинетические параметры процессов дегидрирования и гидрирования MgH<sub>2</sub>. Установлено, что при добавлении 15 мас.% HfCl<sub>4</sub> температура начала разложения MgH<sub>2</sub> снижается на 75 °C по сравнению с измельченным MgH<sub>2</sub> без добавок. Легирование 15 мас.% HfCl₄ значительно улучшает водородную кинетику: полученный композит способен адсорбировать около 5,5 мас.% и десорбировать ~4,5 мас.% водорода в течение 5 мин, в то время

как немодифицированный MgH<sub>2</sub> в аналогичных условиях поглощает лишь ~4,0 мас.% и выделяет ~0,5 мас.% водорода. Согласно расчетам по методу Киссинджера, энергия активации дегидрирования снижается с 167,0 (для чистого MgH<sub>2</sub>) до 102,0 кДж/моль, что подтверждает высокую эффективность HfCl₄ как катализатора. В работе [33] авторы исследовали влияние легирования железом (Fe) на водородоаккумулирующие свойства сплава на основе титана, хрома и молибдена (Ті-Cr-Mo). Полученный композитный сплав состава  $Ti_{40}Cr_{48}Mo_{10}Fe_2$  с объемно-центрированной кубической решеткой демонстрирует снижение энтальпии дегидрирования (ДН) до 32,4 кДж/моль и способность гидрирования при температуре 303 К и дегидрирования при 333 К – 2,59 мас.% водорода.

Существенным недостатком металлогидридов является снижение водородной емкости с увеличением числа циклов адсорбции и десорбции, что обусловлено их физической и химической деградацией. Этот эффект может быть частично нивелирован путем легирования переходными металлами [33-35].

Особый интерес представляют наноразмерные частицы металлических гидридов, поскольку при уменьшении размера до наноуровня снижается плотность упаковки атомов и увеличивается доля атомов, расположенных на поверхности наночастицы, что улучшает диффузию и кинетику сорбции-десорбции водорода. Обзорные статьи [36-37] подробно описывают достижения в области синтеза, изучения структуры и свойств, а также теоретических исследований наноструктурированных гидридов металлов. Целью этих исследований является оптимизация термодинамических и кинетических реакций хранения водорода. Одним из перспективных направлений является создание композитов путем объединения наночастиц металлических гидридов с пористыми материалами с целью предотвращения процесса агломерации. В работе [38] предложен метод создания композитных материалов путем легирования металлорганических каркасов (MOF). Установлено, что возникающий синергетический эффект между МОГ и наногидридами значительно улучшает сорбционные свойства композита и увеличивает объем аккумулируемого водорода. Кроме того, полученные композитные материалы продемонстрировали, что наночастицы металлических гидридов, внедренные в структуру МОГ, адсорбируют и десорбируют водород при более низких температурах по сравнению с объемными гидридами.

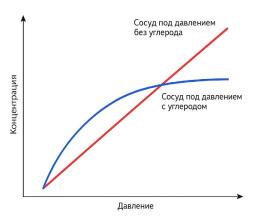
Одним из эффективных инструментов прогнозирования поведения гидридных материалов в различных условиях (температура, давление, состав сплава, размер частиц и др.) является численное моделирование, позволяющее оценивать влияние термодинамических и кинетических параметров без необходимости проведения дорогостоящих экспериментов. Ряд исследований [39-41] продемонстрировал применение моделирования для изучения влияния различных легирующих добавок (например, ионов  $NH_4^+$ , Mg, Be, 3d- и 4d-металлов) на свойства металлогидридов. Эти исследования подтверждают эффективность моделирования как инструмента оптимизации материалов для хранения водорода. В табл. 1 представлены сравнительные рабочие характеристики распространенных гидридов водорода.

Помимо водородоемкости, для практического применения важны термодинамические свойства системы металл-водород. Они определяют условия реализации процессов поглощения/выделения водорода в зависимости от температуры, давления и энергозатрат. С прикладной точки зрения металлогидриды условно делятся на две группы

– низкотемпературные и высокотемпературные. Это разделение основано на эксплуатационных требованиях к системам хранения водорода и не является строго научным. К низкотемпературным относятся металлогидриды, в которых равновесное давление водорода превышает атмосферное при температурах до 100 °C. К данной группе относятся гидриды на основе соединений AB<sub>5</sub>, AB<sub>2</sub>, AB, а также псевдобинарные гидриды сплавов на основе ванадия и системы Ti-Cr.

На основе вышеизложенного можно сделать вывод, что в металлогидридах плотное связывание водорода в твердой матрице обеспечивает высокую безопасность его хранения. Однако большинство известных гидридов с высокой емкостью требуют высоких рабочих температур для проведения процессов адсорбции/десорбции, что ограничивает их широкомасштабное применение. Исключение составляют интерметаллические гидриды, способные функционировать в умеренных условиях, но их водородная емкость не превышает ~1,5-2 мас. %. Теоретически высокую водородную емкость (~18 мас.%) могут обеспечивать комплексные гидриды, такие как LiBH<sub>4</sub>, однако практическое применение этих соедине-

Таблица 1. Сравнительные рабочие характеристики распространенных металлогидридов


| Гидрид                            | Максимальное содержание Н <sub>2</sub> , мас.% | Температура<br>десорбции, °С | Рабочее<br>давление,<br>бар | Преимущества                                                      | Недостатки                                                    |
|-----------------------------------|------------------------------------------------|------------------------------|-----------------------------|-------------------------------------------------------------------|---------------------------------------------------------------|
| MgH <sub>2</sub>                  | ~7,6                                           | 300-400                      | 1-10                        | Высокая емкость,<br>дешевый, легкий<br>металл                     | Высокая температура<br>десорбции, медленная<br>кинетика       |
| LaNi₅H <sub>6</sub>               | ~1,4                                           | 40-120                       | 1-30                        | Быстрая кинетика,<br>работает при низкой<br>температуре           | Низкая масса водорода,<br>высокая стоимость La и Ni           |
| TiFeH <sub>2</sub>                | ~1,9                                           | 300-350                      | 1-20                        | Более дешевый, чем<br>LaNi₅, высокая стабиль-<br>ность к примесям | Требуется активация,<br>чувствителен к<br>примесям            |
| NaAlH₄                            | ~5,6                                           | 180-250                      | 1-10                        | Хорошо исследован,<br>можно улучшить с<br>катализаторами (Ti)     | Многоступенчатая<br>десорбция, нестабилен<br>без катализатора |
| LiBH <sub>4</sub>                 | ~18,4                                          | >350                         | ~10                         | Очень высокая плотность $H_2$ , легкий элемент                    | Очень высокая<br>температура, сложно<br>регенерировать        |
| Ca(BH <sub>4</sub> ) <sub>2</sub> | ~11,5                                          | ~300-400                     | ~10                         | Высокая плотность, легкие элементы                                | Высокая температура,<br>сложный<br>синтез/регенерация         |
| AlH <sub>3</sub>                  | ~10,1                                          | 100-150                      | ~1                          | Низкая температура выделения Н <sub>2</sub> , высокая плотность   | Термически нестабилен,<br>сложно регенерировать               |

ний ограничено неудовлетворительными термодинамическими и кинетическими характеристиками. Среди перспективных материалов особый интерес представляют металлогидриды на основе Mg, обладающие высокой теоретической емкостью (до 7,6 мас.%) при умеренных давлениях. Однако их применение также сдерживается высокими рабочими температурами адсорбции-десорбции (300-400 °C) и медленной кинетикой. Таким образом, основной задачей при разработке высокоэффективных металлогидридов для хранения водорода остаются исследования в области улучшения процессов адсорбции/десорбции, снижения температурных порогов данных процессов и повышения цикличности. Проводимые исследования показывают, что перечисленные проблемы могут быть решены посредством применения катализаторов, легирования и созданием наноструктурированных материалов.

# 5. Нанопористый углерод в системах хранения водорода

При физической адсорбции газа твердым телом молекулы газа адсорбируются на его поверхности за счет ван-дер-ваальсового взаимодействия, что приводит к увеличению концентрации молекул на границе раздела газ/твердое тело по сравнению с их объемной концентрацией в газовой фазе. Это обстоятельство открывает возможность практического применения физической адсорбции для увеличения емкости хранения водорода в баллонах под давлением за счет размещения в них пористого материала с большой удельной поверхностью.

График на рис. 3 демонстрирует, что масса хранимого водорода в пустом баллоне возрастает линейно с увеличением давления, тогда как в баллоне с пористым материалом рост массы носит нелинейный характер. Это указывает на то, что в определенном диапазоне давлений возможно хранение избыточного количества адсорбированного водорода. Однако при достижении предельного давления дальнейшее увеличение плотности газа происходит уже исключительно за счет повышения давления и в этом случае более высокая плотность хранения водорода уже не зависит от присутствия адсорбента. Таким образом избыточная адсорбция определяется как количество газа, поглощенного стенками пор пористого материала в дополнение к объему газа, который занимает объем адсорбента при тех же условиях температуры и давления.



**Рис. 3.** Зависимость массы хранимого водорода от давления: сосуд под давлением без углерода (красная линия) и сосуд под давлением с углеродом (синяя линия).

Адсорбционные свойства пористого твердого тела зависят в первую очередь от размера его пор и для достижения высокой гравиметрической емкости по водороду необходимо не только увеличивать общую площадь удельной поверхности, но и оптимизировать распределение размеров пор. Согласно классификации IUPAC, размеры пор подразделяются на микропоры (<2 нм), мезопоры (от 2 до 50 нм) и макропоры (>50 нм). Микропоры, в свою очередь, делятся на супермикропоры (0,7-2,0 нм) и ультрамикропоры (<0,7 нм). Выше определенной критической точки адсорбция водорода происходит преимущественно в микропорах и его плотность превышает плотность неадсорбированной объемной фазы в мезо- и макропорах или пустотах. Следовательно, адсорбция водорода увеличивается с повышением доступной площади поверхности микропор. Пористые материалы, адсорбирующие газообразное топливо посредством физической адсорбции, характеризуются низкой энтальпией адсорбции, для водорода она составляет ~ 4 кДж/моль при температуре ~ 77 К, и эффективность адсорбции повышается со снижением температуры до криогенных. Взрывоопасность системы «микропористый адсорбент-водород» исключается высокой степенью диспергирования водорода микропористой структурой адсорбента, препятствующей образованию взрывоопасной концентрации водорода. Таким образом, структурная регулировка пористости материала играет решающую роль в повышении его сорбционных свойств и безопасности. В работе [42] представлена термодинамическая модель хранения водорода (Mills-Younglove model) в щелевых порах, которая применяется к углеродным

и нанопористым материалам. Особенностью модели является новое уравнение состояния водорода, которое учитывает квантовые эффекты молекул в ограничивающем потенциале щелевых пор в диапазоне температур 77-300 К и давления 0-1000 МПа. Модель предсказывает, что для достижения целевых показателей Министерства энергетики США по хранению водорода оптимальная ширина нанопор должна составлять 5,6 Å при температуре 77 К (независимо от давления) и порядка 6 Å при температуре 300 К и давлениях свыше 10 МПа.

Значительные достижения в области использования нанопористых материалов для хранения водорода подробно рассмотрены в ряде обзорных работ, где особое внимание уделено роли энергии связи, удельной поверхности, а также влиянию форм и размеров пор на процессы адсорбции и десорбции водорода [43-48].

Ключевыми характеристиками нанопористого углерода, как перспективного материала для хранения водорода, являются высокая удельная поверхность, стабильная каркасная структура, возможность масштабного производства, быстрая кинетика процессов адсорбции и десорбции водорода. В экспериментальной работе [49] проведены исследования с целью определения верхнего предела для хранения водорода при 77 К на активированных углях, полученных путем химической активации антрацитов. Уникальность данной работы состоит в том, что нанопористый углерод получали в независимых экспериментах во Вроцлавском технологическом университете (Польша) и Институте Жана Ламура (Франция) и полученные результаты были подтверждены в трех независимых лабораториях с использованием объемных и гравиметрических приборов. В работе [50] было показано, что максимальная теоретическая удельная поверхность графенового листа составляет 2630 м<sup>2</sup>/г, на основе этих данных авторами работы [49] рассчитана теоретическая предельная сорбционная емкость графена по водороду, составляющая 6,8 мас.%. Авторы работы [49] на полученном активированном угле с удельной поверхностью 3220 м²/г достигли адсорбции водорода 6,4 мас.% при 77 К и 4 МПа, которую обозначили как верхний предел адсорбции нанопористым углеродом. Однако с тех пор проводятся многочисленные исследования, которые показывают, что 6,4 мас.% водорода не является верхним пределом в нанопористых углеродных материалах.

Особый интерес представляет использование отходов биомассы в качестве исходного сырья для получения нанопористого углерода. Благодаря своей доступности, разнообразию, возобновляемости, регулируемым характеристикам и экономичности такие материалы являются одними из наиболее перспективных прекурсоров для создания адсорбентов водорода. В работе [51] рассмотрены современные достижения в области получения пористых углеродов из биомассы, а также проанализирован их потенциал для применения в технологиях хранения водорода.

Проводимые исследования показывают, что структурная настройка пористости углеродных материалов в зависимости от методов получения и выбора исходного биосырья играет ключевую роль в повышении их сорбционных свойств. Одним из ярких примеров в этом направлении являются два независимых исследования [52-53], в которых активированный углерод, полученный их разных составляющих сосны ладанной, продемонстрировал различную адсорбционную способность по водороду. В работе [52] активированный уголь был получен из шишек сосны ладанной, схема процесса его получения представлена на рис. 4. Авторы промытые сосновые шишки измельчали и нагревали при 453 К в течение 5 ч для удаления нежелательной влаги [52]. Полученный порошок шишек подвергался термохимической активации с использованием КОН при различных массовых соотношениях 0,5:1, 1:1 и 3:1. Среди полученных образцов наибольшей



**Рис. 4.** Схема процесса получения активированных пористых углей из сосновых шишек сосны ладанной. Воспроизведено из [52], опубликовано по лицензии СС ВУ 4.0.

удельной поверхностью 1173 м<sup>2</sup>/г и объемом микропор 0,383 см<sup>3</sup>г<sup>-1</sup> обладал образец, активированный при соотношении порошка сосновых шишек к КОН 1:1, который показал наилучшие значения емкости хранения водорода при 77 К: 1,6 мас.% при давлении 1 бар и 5,25 мас.% при давлении 80 бар. Во втором исследовании [53] нанопористый углерод синтезировали из древесины сосны ладанной. Опилки сосны ладанной первоначально были карбонизованы гидротермальным методом при температурах 180, 220 и 260 °C, а затем активированы при температурах 700, 800 и 900 °C с использованием в качестве активатора КОН с соотношением к карбонизату 2:1, 3:1 и 4:1. Образец нанопористого углерода, полученный при температуре гидротермальной карбонизации 260 °C и температуре химической активации 800 °C при соотношении КОН:карбонизат = 4:1 обладает удельной площадью поверхности 3666  $M^2/\Gamma$  с общим объемом пор 1,560 с $M^3\Gamma^{-1}$ и объемом микропор 1,32 см<sup>3</sup>г<sup>-1</sup>. Максимальная адсорбционная емкость полученного нанопористого углерода достигает 10,2 мас.% при 77 К и 55 бар. Повышение удельной поверхности в 3 раза и объема микропор 3,5 раза приводит к увеличению абсорбционной емкости водорода примерно вдвое при существенно меньшем давлении. Таким образом, вышеуказанные исследования показывают, что структура исходного сырья и условия его обработки оказывают существенное влияние на емкость хранения водорода нанопористым углеродом.

Основные компоненты рисовой шелухи – побочного продукта переработки риса, накапливающегося в объеме сотен миллионов тонн, благодаря сочетанию органических (целлюлоза, гемицеллюлоза, лигнин) и неорганических (кремнезем) компонентов способствуют формированию иерархической нанопористой структуры углерода, состоящей из микро- мезо- и макропор. В обзоре [54] подробно рассмотрены различные способы синтеза, а также экологические, каталитические и энергетические аспекты применения нанопористого углерода, полученного из рисовой шелухи. Ненапористый углерод, полученный из рисовой шелухи, также активно изучается и в качестве адсорбента водорода. В работе [55] термическую карбонизацию рисовой шелухи проводили при температуре 400 °C, затем с использованием NaOH при различном соотношении проводили термохимическую активацию при температуре 800 °C в течение 1-2 ч. При оптимальных экспериментальных условиях

был получен нанопористый углерод с удельной площадью поверхности 3969 м<sup>2</sup>/г и объемом пор 2,03 см<sup>3</sup>/г, который продемонстрировал емкость хранения водорода 7,7 мас.% при 77 К и 1,2 МПа. В работе [56] была проведена термохимическая активация рисовой шелухи с использованием КОН, при этом исследовалось влияние условий охлаждения полученного нанопористого углерода после активации на эффективность адсорбции водорода. Проведенные исследования показали, что параметры охлаждения влияют на распределение размеров пор при сохранении величины удельной площади поверхности. Установлено, что при быстром охлаждении максимальная емкость хранения водорода нанопористым углеродом при 77 К составляет 7,2 мас.%, тогда как при естественном охлаждении она снижается до 5,5 мас.%. Авторы пришли к выводу, что условия охлаждения при термохимической активации нанопористого углерода на основе рисовой шелухи существенно влияют на формирование микропор и, как следствие, на его адсорбционные свойства.

В работе [57] с применением методики предварительной механической активации исходной рисовой шелухи перед процессом карбонизации был получен нанопористый углерод с удельной площадью поверхности, рассчитанной по методу Брунауэра-Эммета-Теллера,  $-2713 \text{ m}^2/\text{г}$ , удельной площадью поверхности микропор, рассчитанной по методу Дубининой-Радушкевича, — 3099 м<sup>2</sup>/г и общим объемом пор, рассчитанным по методу Баретта-Джойнера-Халенды, – 1,625 см<sup>3</sup>/г. Адсорбционная емкость полученного образца по водороду составила 3,7 мас.% при температуре 190 °С и давлении 9 кгс/см<sup>2</sup>, что на 29,7% превышало адсорбционную емкость нанопористого углерода, полученного на основе рисовой шелухи, не подвергнутой механической активации. Авторы предположили, что механическая активация разрыхляет межклеточное вещество и вызывает частичную деполимеризацию его компонентов, тем самым повышает доступность внутренней структуры материала и обеспечивает более контролируемое формирование пор в процессе карбонизации.

В работе [58] для получения нанопористого углерода рисовую шелуху сначала подвергали высокотемпературной ферментативной осмотической активации. Авторы предположили, что процесс ферментации разрушает лигнин и открывает доступ к аморфному SiO, который будет интенсивно растворяться и удаляться в ходе термохимической активации с использованием КОН,

способствуя формированию многочисленных углеродных скелетов. Полученный таким образом образец с удельной площадью поверхности 2270 м²/г показал емкость хранения водорода 1,21 мас.% при комнатной температуре (25 °C) и давлении 80 бар. Этот результат является одним из самых высоких показателей для хранения водорода в нанопористом углероде при комнатной температуре. Рассмотренные исследования демонстрируют высокий потенциал использования рисовой шелухи, как возобновляемого сырья, для получения нанопористого углерода, предназначенного для систем хранения водорода.

В статье [59] представлен обзор и оценена концепция хранения водорода в пористых материалах, основанная на механизме «перетока» (spillover). Для осуществления данного механизма «перетока» в структуру пористого материала внедряют наночастицы металлов (Pd, Pt, Ni) в качестве катализаторов диссоциации водорода. Диссоциированные атомы водорода мигрируют от металлических частиц в поры пористого материала с более низкой энергией активации (<10 кДж/моль). Преимуществом такой концепции является возможность работы систем хранения водорода при комнатной температуре.

Результаты экспериментальных исследований также подтверждают, что внедрение металлических наночастиц (Pd, Ni и Pt) в структуру углеродных материалов способствует улучшению характеристик хранения водорода за счет диссоциации водорода с последующим «перетоком» [60-62]. В работе [63] был получен пористый углерод из бамбука с удельной поверхностью 3155  $M^2/\Gamma$  и легирован азотом (N) с использованием гидротермального метода и микроволнового излучения. Далее методом влажной пропитки был получен углеродный композитный материал, содержащий наночастицы платины (Pt). Кинетические характеристики процесса сорбции водорода данным углеродным композитным материалом изучались при двух условиях: при температуре 77 К и давлении до 1 бар, а также при температуре 298 К и давлении до 4 МПа. Установлено, что легирование азотом оказывает положительное влияние на процесс сорбции водорода независимо от температуры и давления. При температуре 77 К адсорбционная емкость по водороду зависела исключительно от пористости материала и не зависела от содержания Pt и N. При температуре 298 К наблюдалось значительное увеличение адсорбционной емкости по водороду, авторы связывают это с эффектом «перетока», возникающим за счет легирования пористых материалов Pt и N. Таким образом, приведенные исследования показывают, что концепция «перетока», реализуемая путем внедрения металлических наночастиц в структуру нанопористого углерода, является одним из перспективных направлений повышения эффективности хранения водорода при комнатной температуре.

#### 6. Заключение

Несмотря на достигнутый прогресс, создание универсальных, безопасных и экономически эффективных систем хранения остается нерешенной задачей. Наиболее изученные и используемые на практике — это методы хранения в виде сжатого газа и жидкого водорода, однако данные технологии сопровождаются рядом существенных ограничений: высокими энергозатратами, низкой объемной плотностью и проблемами безопасности эксплуатации.

Перспективным направлением является химическое хранение водорода в форме металлогидридов и сложных гидридных соединений. Такие системы отличаются компактностью и сравнительной безопасностью, но их внедрение сдерживается необходимостью поддержания высоких температур, медленной кинетикой процессов адсорбции и десорбции, а также деградацией свойств материалов при циклировании. В этой связи внимание исследователей сосредоточено на изучении процессов легирования, каталитической модификации и применении наноструктурированных материалов, способствующих улучшить термодинамические и кинетические характеристики хранения.

Особый интерес в последние годы вызывают нанопористые углеродные материалы, получаемые из возобновляемого сырья, такого как биомасса. Благодаря высокой удельной поверхности, регулируемой пористости и возможности масштабного производства они рассматриваются как перспективные материалы для хранения водорода физической адсорбцией. Экспериментальные данные показывают, что оптимизация структуры пор позволяет достичь емкости хранения свыше 10 мас.% при криогенных температурах и умеренных давлениях, что приближает эти материалы к целевым показателям для масштабного внедрения водорода в качестве топлива, установленным Министерством энергетики США.

В контексте стремительного развития водородных технологий и активных усилий по декарбонизации промышленных процессов и

транспорта особую актуальность приобретает формирование национальных стратегий, направленных на развитие водородной энергетики, в частности реализация Концепции развития водородной энергетики в Республике Казахстан до 2030 года. Энергетическая структура страны находится в процессе трансформации, ориентированной на снижение углеродного следа и внедрение инновационных технологий. Водородная энергетика может сыграть в этом процессе важную роль, обеспечивая как экологические, так и экономические преимущества. Казахстан обладает значительным потенциалом для развития водородной отрасли благодаря богатым природным ресурсам и стратегическому географическому положению, что позволяет рассматривать страну как одного из потенциальных лидеров на глобальном рынке водородных технологий.

Таким образом, дальнейшее развитие технологий хранения водорода требует комплексного подхода, включающего совершенствование существующих систем, разработки новых материалов, а также перехода к устойчивым технологиям переработки возобновляемого сырья. В условиях реализации национальных стратегий, таких как Концепция развития водородной энергетики, решение этих задач будет способствовать широкому внедрению водорода в энергетический, промышленный и транспортный секторы, ускоряя переход к низкоуглеродной экономике.

### Благодарность

Данное исследование финансируется Комитетом науки Министерства науки и высшего образования Республики Казахстан (грант № АР23485972 «Композитные материалы для хранения водорода при комнатной температуре на основе интерметаллидов и пористого углерода»).

### Список литературы (ГОСТ)

- [1]. UNIDO. Global Programme for Hydrogen in Industry (GPHI). UNIDO Green Hydrogen, 2021. URL: https://www.unido.org/solutions/globalprogramme-hydrogen-industry
- [2]. Концепция развития водородной энергетики утвердили в Казахстане. URL: https://www.zakon.kz/pravo/6452721-kontseptsiyu-razvitiya-vodorodnoy-energetiki-utverdili-v-kazakhstane. html
- [3]. International Energy Agency. The Future of Hydrogen. URL: https://www.iea.org/reports/

- the-future-of-hydrogen
- [4]. Zacharia R., Rather S.U. Review of solid state hydrogen storage methods adopting different kinds of novel materials // J. Nanomater. 2015. Vol. 2015. Article ID 914845.
- [5]. Ren J., Musyoka N.M., Langmi H.W., Mathe M., Liao S. Current research trends and perspectives on materials-based hydrogen storage solutions: A critical review // Int. J. Hydrogen Energy. – 2017. – Vol. 42, № 1. – P. 289–311.
- [6]. Bosu S., Rajamohan N. Recent advancements in hydrogen storage – Comparative review on methods, operating conditions and challenges // Int. J. Hydrogen Energy. – 2024. – Vol. 52. – P. 352–370.
- [7]. Daulbayev C., Nurgaliyeva A., Assanov S., Yermagambet B., Bekmyrza K. A mini-review on recent trends in prospective use of porous 1D nanomaterials for hydrogen storage // S. Afr. J. Chem. Eng. 2022. Vol. 39, № 1. P. 52–61.
- [8]. Фатеев В. Н., Алексеева О. К., Коробцев С. В., Мусаев Р. А. Проблемы аккумулирования и хранения водорода // Kimya Probl. 2018. № 4. URL: https://cyberleninka.ru/article/n/problemyakkumulirovaniya-i-hraneniya-vodoroda (дата обращения: 10.09.2025).
- [9]. Barthélémy H., Weber M., Barbier F. Hydrogen storage: Recent improvements and industrial perspectives // Int. J. Hydrogen Energy. – 2017. – Vol. 42, № 11. – P. 7254–7262.
- [10]. Cheng Q., Xu J., Wang W., Zhang H., Liu Z., Yang J. Review of common hydrogen storage tanks and current manufacturing methods for aluminium alloy tank liners // Int. J. Lightweight Mater. Manuf. 2024. Vol. 7, № 2. P. 269–284.
- [11]. Chapelle D., Perreux D. Optimal design of a Type 3 hydrogen vessel: Part I Analytic modelling of the cylindrical section // Int. J. Hydrogen Energy. 2006. Vol. 31, № 5. P. 627–638.
- [12]. Usman M. R. Hydrogen storage methods: Review and current status // Renew. Sustain. Energy Rev. 2022. Vol. 167. Article 112743.
- [13]. Wu J., Zhang Q., Li Y., Zhou H., Chen S. The development status of composite materials and windingprocessofTypeIVhydrogenstoragecylinder // Int. J. Automot. Manuf. Mater. – 2025. – P. 4.
- [14]. Kis D. I., Kokai E. A review on the factors of liner collapse in type IV hydrogen storage vessels // Int. J. Hydrogen Energy. 2024. Vol. 50. P. 236–253.
- [15]. Air A., Ahmed F., Tang Y., Li M. A review of Type V composite pressure vessels and automated fibre placement based manufacturing // Compos. Part B: Eng. 2023. Vol. 253. Article 110573.
- [16]. Jaber M., Liu Y., Al-Aqtash N., Sulaiman S. A.

- Burst pressure performance comparison of type V hydrogen tanks: Evaluating various shapes and materials // Int. J. Hydrogen Energy. 2024. Vol. 81. P. 906–917.
- [17]. Yin L., Yang H., Ju Y. Review on the key technologies and future development of insulation structure for liquid hydrogen storage tanks // Int. J. Hydrogen Energy. 2024. Vol. 57. P. 1302–1315.
- [18]. Qiu Y., Liu W., Huang Z., Liu S., Wu G. Research progress of cryogenic materials for storage and transportation of liquid hydrogen // Metals. 2021. Vol. 11, № 7. Article 1101.
- [19]. Morales-Ospino R., Celzard A., Fierro V. Strategies to recover and minimize boil-off losses during liquid hydrogen storage // Renew. Sustain. Energy Rev. 2023. Vol. 182. Article 113360.
- [20]. Von Colbe J.B., Ares J.R., Barale J., et al. Application of hydrides in hydrogen storage and compression: Achievements, outlook and perspectives // Int. J. Hydrogen Energy. 2019. Vol. 44, № 15. P. 7780–7808.
- [21]. Orimo S.I., Nakamori Y., Eliseo J. R., Züttel A., Jensen C. M. Complex hydrides for hydrogen storage // Chem. Rev. 2007. Vol. 107, № 10. P. 4111–4132.
- [22]. Zhang W., Zhang X., Huang Z., Li H. W., Gao M., Pan H., Liu Y. Recent development of lithium borohydride-based materials for hydrogen storage // Adv. Energy Sustain. Res. 2021. Vol. 2, № 10. Article 2100073.
- [23]. Modi P., Aguey-Zinsou K. F. Room temperature metal hydrides for stationary and heat storage applications: A review // Front. Energy Res. 2021. Vol. 9. Article 616115.
- [24]. Kikkinides E. S., Georgiadis M. C., Stubos A. K. Dynamic modelling and optimization of hydrogen storage in metal hydride beds // Energy. 2006. Vol. 31, № 13. P. 2428–2446.
- [25]. Abe J. O., Popoola A. P. I., Ajenifuja E., Popoola O. M. Hydrogen energy, economy and storage: Review and recommendation // Int. J. Hydrogen Energy. 2019. Vol. 44, № 29. P. 15072–15086.
- [26]. Zhou C., Zhang J., Bowman Jr R. C., Fang Z. Z. Roles of Ti-based catalysts on magnesium hydride and its hydrogen storage properties // Inorganics. 2021. Vol. 9, № 5. Article 36.
- [27]. Rusman N. A. A., Dahari M. A review on the current progress of metal hydrides material for solid-state hydrogen storage applications // Int. J. Hydrogen Energy. 2016. Vol. 41, № 28. P. 12108–12126.
- [28]. Nivedhitha K. S., Beena T., Banapurmath N. R., Umarfarooq M. A., Ramasamy V., Soudagar M. E. M., Ağbulut Ü. Advances in hydrogen storage with metal hydrides: Mechanisms, materials, and

- challenges // Int. J. Hydrogen Energy. 2024. Vol. 61. P. 1259–1273.
- [29]. Varin R. A., Zaranski Z., Czujko T., Polanski M., Wronski Z. S. The composites of magnesium hydride and iron-titanium intermetallic // Int. J. Hydrogen Energy. – 2011. – Vol. 36. – P. 1177–1183.
- [30]. Chu H., Li H., Qiu S., Chua Y. S., Yin C., Huang H., Sun L. High-efficiency hydrogen storage of magnesium hydride achieved by catalytic doping with zirconium titanate // J. Energy Storage. – 2025. – Vol. 114. – Article 115907.
- [31]. Xiao H., Yi L., Lei H., Xu Y., Zhang X., Hu H., Chen Q. TiCrNb hydride fabricated by melt spinning as the efficient catalyst for enhancing the hydrogen storage properties of MgH2 // J. Magnes. Alloys. 2025. DOI: 10.1016/j.jma.2025.01.005.
- [32]. Ismail M. Effect of adding different percentages of HfCl4 on the hydrogen storage properties of MgH2 // Int. J. Hydrogen Energy. 2021. Vol. 46, № 12. P. 8621–8628.
- [33]. Cai H., Dou B., Xue L., Cheng B., Zhao Y., Wan D., Xue Y. Engineering Ti–Cr–Mo-based alloys for hydrogen storage: Fe doping as a strategy for improved reversibility and stability // Int. J. Hydrogen Energy. 2025. Vol. 128. P. 499–510.
- [34]. Li R., Lu H., Pan X., Zhao J., Wang W., Li Y., Zhang L. Improvement on cyclic stability of AB4-type La—Mg—Ni-based hydrogen storage alloys via merging Y element for nickel-metal hydride batteries // Int. J. Hydrogen Energy. 2023. Vol. 48, № 84. P. 32849–32859.
- [35]. Zhang X., Li J., Zhao Y., Zhang G., He X., Bai J., Wang L. Cycling decay mechanism of AB5-type hydrogen storage alloy for metal hydride hydrogen compressor // J. Rare Earths. 2025. DOI: 10.1016/j.jre.2025.04.026.
- [36]. Schneemann A., White J. L., Kang S. Y., Jeong S., Wan L. F., Cho E. S., Heo T. W., Prendergast D., Urban J. J., Wood B. C., Allendorf M. D., Stavila V. Nanostructured metal hydrides for hydrogen storage // Chem. Rev. 2018. Vol. 118. P. 10775—10839.
- [37]. Boateng E., Chen A. Recent advances in nanomaterial-based solid-state hydrogen storage //Mater.TodayAdv.-2020.-Vol.6.-Article100022.
- [38]. Kudiiarov V., Lyu J., Semyonov O., Lider A., Chaemchuen S., Verpoort F. Prospects of hybrid materials composed of MOFs and hydrideforming metal nanoparticles for light-duty vehicle hydrogen storage // Appl. Mater. Today. 2021. Vol. 25. Article 101208.
- [39]. ElKhatabiM.,BhihiM.,NajiS.,LabrimH.,Benyoussef A., El Kenz A., Loulidi M. Study of doping effects

- with 3d and 4d-transition metals on the hydrogen storage properties of MgH2 // Int. J. Hydrogen Energy. 2016. Vol. 41, № 8. P. 4712–4718.
- [40]. Hu J., Wang W., Xie L., Sun G., Shen H., Li X., Xiao H. Effects of NH4+ doping on the hydrogen storage properties of metal hydrides // Int. J. Hydrogen Energy. 2023. Vol. 48, № 50. P. 19153–19159.
- [41]. Ali M., Bibi Z., Younis M. W., Majeed K., Afzal U., Khan S., Mubashir M. Enhancement of hydrogen storage characteristics of Na2CaH4 hydrides by introducing the Mg and Be dopant: A first-principles study // Int. J. Hydrogen Energy. 2024. Vol. 70. P. 579–590.
- [42]. Cabria I., López M. J., Alonso J. A. The optimum average nanopore size for hydrogen storage in carbon nanoporous materials // Carbon. 2007. Vol. 45, № 13. P. 2649–2658.
- [43]. Berenguer-Murcia Á., Marco-Lozar J. P., Cazorla-Amorós D. Hydrogen storage in porous materials: Status, milestones, and challenges // Chem. Rec. 2018. Vol. 18. P. 900–912.
- [44]. Ramirez-Vidal P., Sdanghi G., Celzard A., Fierro V. High hydrogen release by cryo-adsorption and compression on porous materials // Int. J. Hydrogen Energy. 2022. Vol. 47. P. 8892–8915.
- [45]. Mohan M., Sharma V. K., Kumar E. A., Gayathri V. Hydrogen storage in carbon materials A review // Energy Storage. 2019. Vol. 1. Article e35.
- [46]. Chen Z., Kirlikovali K. O., Idrees K. B., Wasson M. C., Farha O. K. Porous materials for hydrogen storage // Chem. 2022. Vol. 8, № 3. P. 693–716.
- [47]. Wang Y., Xue Y., Züttel A. Nanoscale engineering of solid-state materials for boosting hydrogen storage // Chem. Soc. Rev. – 2024. – Vol. 53, № 2. – P. 972–1003.
- [48]. Mahmoud L.A., Rowlandson J.L., Fermin D.J., Ting V.P., Nayak S. Porous carbons: a class of nanomaterials for efficient adsorption-based hydrogen storage // RSC Appl. Interfaces. – 2025.
- [49]. Fierro V., Szczurek A., Zlotea C., Marêché J. F., Izquierdo M. T., Albiniak A., Celzard A. Experimental evidence of an upper limit for hydrogen storage at 77 K on activated carbons // Carbon. 2010. Vol. 48, № 7. P. 1902–1911.
- [50]. Schlapbach L., Züttel A. Hydrogen-storage materials for mobile applications // Nature. – 2001. – Vol. 414. – P. 353–358.
- [51]. Elyasi S., Saha S., Hameed N., Mahon P.J., Juodkazis S., Salim N. Emerging trends in biomass-derived porouscarbon materials for hydrogen storage // Int. J. Hydrogen Energy. 2024. Vol. 62. P. 272–306.
- [52]. Stelitano S., Conte G., Policicchio A., Aloise A., Desiderio G., Agostino R. G. Pinecone-derived activated carbons as an effective medium for

- hydrogen storage // Energies. 2020. Vol. 13, N 9. Article 2237.
- [53]. Sultana A.I., Reza M.T. Investigation of hydrothermal carbonization and chemical activation process conditions on hydrogen storage in loblolly pine-derived superactivated hydrochars // Int. J. Hydrogen Energy. 2022. Vol. 47, № 62. P. 26422–26434.
- [54]. Alam M.M., Hossain M.A., Hossain M.D., Johir M. A.H., Hossen J., Rahman M.S., Ahmed M.B. The potentiality of rice husk-derived activated carbon: From synthesis to application // Processes. − 2020. − Vol. 8, № 2. − Article 203.
- [55]. Chen H., Wang H., Xue Z., Yang L., Xiao Y., Zheng M., Sun L. High hydrogen storage capacity of rice hull based porous carbon // Int. J. Hydrogen Energy. – 2012. – Vol. 37, № 24. – P. 18888–18894.
- [56]. Komatsu K., Li H., Kanma Y., Zhu J., Toda I., Tsuda Y., Saitoh H. Increase in H2 storage capacity of nanoporous carbon fabricated from waste rice husk via improving the mode of the reaction mixture cooling down // J. Mater. Res. Technol. 2021. Vol. 12. P. 1203–1211.
- [57]. Lesbayev B., Rakhymzhan N., Ustayeva G., Maral Y., Atamanov M., Auyelkhankyzy M., Zhamash A. Preparation of nanoporous carbon from rice husk with improved textural characteristics for hydrogen sorption // J. Compos. Sci. 2024. Vol. 8, № 2. P. 74.
- [58]. Cheng S., Cheng X., Tahir M. H., Wang Z., Zhang J. Synthesis of rice husk activated carbon by fermentation osmotic activation method for hydrogen storage at room temperature // Int. J. Hydrogen Energy. 2024. Vol. 62. P. 443–450.
- [59]. Wang L. F., Yang R. T. Hydrogen storage on carbon-based adsorbents and storage at ambient temperature by hydrogen spillover // Catal. Rev. 2010. Vol. 52. P. 411–461.
- [60]. Chung T.-Y., Tsao C.-S., Tseng H.-P., Chen C.-H., Yu M.-S. Effects of oxygen functional groups on the enhancement of the hydrogen spillover of Pddoped activated carbon // J. Colloid Interface Sci. – 2015. – Vol. 441. – P. 98–105.
- [61]. Parambhath V. B., Nagar R., Ramaprabhu S. Effect of nitrogen doping on hydrogen storage capacity of palladium decorated graphene // Langmuir. – 2012. – Vol. 28. – P. 7826–7833.
- [62]. Vinayan B. P., Sethupathi K., Ramaprabhu S. Facile synthesis of triangular shaped palladium nanoparticles decorated nitrogen doped graphene and their catalytic study for renewable energy applications // Int. J. Hydrogen Energy. 2013. Vol. 38. P. 2240–2250.

[63]. Zhao W., Luo L., Chen T., Li Z., Zhang Z., Wang H., Rao J., Feo L., Fan M. Synthesis and characterization of Pt-N-doped activated biocarbon composites for hydrogen storage // Compos. Part B: Eng. – 2019. – Vol. 161. – P. 464–472.

#### References

- [1]. UNIDO. Global Programme for Hydrogen in Industry (GPHI), UNIDO Green Hydrogen, 2021. https://www.unido.org/solutions/global-programme-hydrogen-industry.
- [2]. The Concept for the Development of Hydrogen Energy has been approved in Kazakhstan. https:// www.zakon.kz/pravo/6452721-kontseptsiyurazvitiya-vodorodnoy-energetiki-utverdili-vkazakhstane.html.
- [3]. International Energy Agency. The Future of Hydrogen. https://www.iea.org/reports/the-future-of-hydrogen.
- [4]. R. Zacharia, S.U. Rather. Review of solid state hydrogen storage methods adopting different kinds of novel materials, J. Nanomater. 2015 (2015) 914845. https://doi.org/10.1155/2015/914845.
- [5]. J.W. Ren, N.M. Musyoka, H.W. Langmi, et al. Current research trends and perspectives on materials-based hydrogen storage solutions: A critical review, Int. J. Hydrogen Energy 42 (2017) 289–311. https://doi.org/10.1016/j. ijhydene.2016.11.195.
- [6]. S. Bosu, N. Rajamohan. Recent advancements in hydrogen storage – Comparative review on methods, operating conditions and challenges, Int. J. Hydrogen Energy 52 (2024) 352–370. https://doi.org/10.1016/j.ijhydene.2023.01.344.
- [7]. C. Daulbayev, A. Nurgaliyeva, S. Assanov, et al. A mini-review on recent trends in prospective use of porous 1D nanomaterials for hydrogen storage, S. Afr. J. Chem. Eng. 39 (2022) 52–61. https://doi. org/10.1016/j.sajce.2021.11.008.
- [8]. Fateev, V. N., Alekseeva, O. K., Korobtsev, S. V., & Musaev, R. A. (2018). Problems of hydrogen accumulation and storage. Kimya Probl, 4. Retrieved from https://cyberleninka.ru/article/n/ problemy-akkumulirovaniya-i-hraneniyavodoroda.
- [9]. H. Barthélémy, M. Weber, F. Barbier. Hydrogen storage: Recent improvements and industrial perspectives, Int. J. Hydrogen Energy 42 (2017) 7254–7262. https://doi.org/10.1016/j. ijhydene.2016.03.178.
- [10]. Q. Cheng, J. Xu, W. Wang, et al. Review of common hydrogen storage tanks and current

- manufacturing methods for aluminium alloy tank liners, Int. J. Lightweight Mater. Manuf. 7 (2024) 269–284. https://doi.org/10.1016/j. ijlmm.2023.08.002.
- [11]. D. Chapelle, D. Perreux. Optimal design of a Type 3 hydrogen vessel: Part I Analytic modelling of the cylindrical section, Int. J. Hydrogen Energy 31 (2006) 627–638. https://doi.org/10.1016/j.ijhydene.2005.06.012.
- [12]. M.R. Usman. Hydrogen storage methods: Review and current status, Renew. Sustain. Energy Rev. 167 (2022) 112743. https://doi.org/10.1016/j. rser.2022.112743.
- [13]. J. Wu, R. Wang, R. Liu, et al. The development status of composite materials and winding process of Type IV hydrogen storage cylinder, Int. J. Automot. Manuf. Mater. 4 (1) (2025) 4. https://doi.org/10.53941/ijamm.2025.100004.
- [14]. D.I. Kis, E. Kokai. A review on the factors of liner collapse in type IV hydrogen storage vessels, Int. J. Hydrogen Energy 50 (2024) 236–253. https://doi. org/10.1016/j.ijhydene.2023.09.316.
- [15]. A. Air, F. Ahmed, Y. Tang, et al. A review of Type V composite pressure vessels and automated fibre placement based manufacturing, Compos. Part B: Eng. 253 (2023) 110573. https://doi.org/10.1016/j.compositesb.2023.110573.
- [16]. M. Jaber, Y. Liu, N. Al-Aqtash, et al. Burst pressure performance comparison of type V hydrogen tanks: Evaluating various shapes and materials, Int. J. Hydrogen Energy 81 (2024) 906–917. https://doi.org/10.1016/j.ijhydene.2024.07.315.
- [17]. L. Yin, H. Yang, Y. Ju. Review on the key technologies and future development of insulation structure for liquid hydrogen storage tanks, Int. J. Hydrogen Energy 57 (2024) 1302–1315. https://doi. org/10.1016/j.ijhydene.2024.01.093.
- [18]. Y. Qiu, W. Liu, Z. Huang, et al. Research progress of cryogenic materials for storage and transportation of liquid hydrogen, Metals 11 (2021) 1101. https://doi.org/10.3390/met11071101.
- [19]. R. Morales-Ospino, A. Celzard, V. Fierro. Strategies to recover and minimize boil-off losses during liquid hydrogen storage, Renew. Sustain. Energy Rev. 182 (2023) 113360. https://doi. org/10.1016/j.rser.2023.113360.
- [20]. J.B. Von Colbe, J.R. Ares, J. Barale, et al. Application of hydrides in hydrogen storage and compression: Achievements, outlook and perspectives, Int. J. Hydrogen Energy 44 (2019) 7780-7808. https://doi.org/10.1016/j.ijhydene.2019.01.104.
- [21]. S.I. Orimo, Y. Nakamori, J.R. Eliseo, et al. Complex hydrides for hydrogen storage, Chem. Rev. 107

- (2007) 4111-4132. https://doi.org/10.1021/cr0501846.
- [22]. W. Zhang, X. Zhang, Z. Huang, et al. Recent development of lithium borohydride-based materials for hydrogen storage, Adv. Energy Sustain. Res. 2 (2021) 2100073. https://doi. org/10.1002/aesr.202100073.
- [23]. P. Modi, K.F. Aguey-Zinsou. Room temperature metal hydrides for stationary and heat storage applications: A review, Front. Energy Res. 9 (2021) 616115. https://doi.org/10.3389/ fenrg.2021.616115.
- [24]. E.S. Kikkinides, M.C. Georgiadis, A.K. Stubos. Dynamic modelling and optimization of hydrogen storage in metal hydride beds, Energy 31 (2006) 2428-2446. https://doi.org/10.1016/j. energy.2005.10.036.
- [25]. J.O. Abe, A.P.I. Popoola, E. Ajenifuja, et al. Hydrogen energy, economy and storage: Review and recommendation, Int. J. Hydrogen Energy 44 (2019) 15072-15086. https://doi.org/10.1016/j. ijhydene.2019.04.068.
- [26]. C. Zhou, J. Zhang, R.C. Bowman Jr., et al. Roles of Ti-based catalysts on magnesium hydride and its hydrogen storage properties, Inorganics 9 (2021) 36. https://doi.org/10.3390/inorganics9050036.
- [27]. N.A.A. Rusman, M. Dahari. A review on the current progress of metal hydrides material for solid-state hydrogen storage applications, Int. J. Hydrogen Energy 41 (2016) 12108-12126. https://doi.org/10.1016/j.ijhydene.2016.05.244.
- [28]. K.S. Nivedhitha, T. Beena, N.R. Banapurmath, et al. Advances in hydrogen storage with metal hydrides: Mechanisms, materials, and challenges, Int. J. Hydrogen Energy 61 (2024) 1259-1273. https://doi.org/10.1016/j.ijhydene.2024.02.335.
- [29]. R.A. Varin, Z. Zaranski, T. Czujko, et al. The composites of magnesium hydride and irontitanium intermetallic, Int. J. Hydrogen Energy 36 (2011) 1177-1183. https://doi.org/10.1016/j. ijhydene.2010.06.092.
- [30]. H. Chu, H. Li, S. Qiu, et al. High-efficiency hydrogen storage of magnesium hydride achieved by catalytic doping with zirconium titanate, J. Energy Storage 114 (2025) 115907. https://doi. org/10.1016/j.est.2025.115907.
- [31]. H. Xiao, L. Yi, H. Lei, et al. TiCrNb hydride fabricated by melt spinning as the efficient catalyst for enhancing the hydrogen storage properties of MgH2, J. Magnes. Alloys (2025). https://doi.org/10.1016/j.jma.2025.01.005.
- [32]. M. Ismail. Effect of adding different percentages of HfCl4 on the hydrogen storage properties of MgH2,

- Int. J. Hydrogen Energy 46 (2021) 8621-8628. https://doi.org/10.1016/j.ijhydene.2020.12.068H.
- [33]. H. Cai, B. Dou, L. Xue, et al. Engineering Ti–Cr–Mobased alloys for hydrogen storage: Fe doping as a strategy for improved reversibility and stability, Int. J. Hydrogen Energy 128 (2025) 499–510. https://doi.org/10.1016/j.ijhydene.2025.04.139.
- [34]. R. Li, H. Lu, X. Pan, et al. Improvement on cyclic stability of AB4-type La–Mg–Ni-based hydrogen storage alloys via merging Y element for nickel-metal hydride batteries, Int. J. Hydrogen Energy 48 (2023) 32849–32859. https://doi.org/10.1016/j.ijhydene.2023.05.011.
- [35]. X. Zhang, J. Li, Y. Zhao, et al. Cycling decay mechanism of AB5-type hydrogen storage alloy for metal hydride hydrogen compressor, J. Rare Earths (2025). https://doi.org/10.1016/j. jre.2025.04.026.
- [36]. A. Schneemann, J.L. White, S.Y. Kang, et al. Nanostructured metal hydrides for hydrogen storage, Chem. Rev. 118 (2018) 10775-10839. https://doi.org/10.1021/acs.chemrev.8b00313.
- [37]. E. Boateng, A. Chen. Recent advances in nanomaterial-based solid-state hydrogen storage, Mater. Today Adv. 6 (2020) 100022. https://doi. org/10.1016/j.mtadv.2019.100022.
- [38]. V. Kudiiarov, J. Lyu, O. Semyonov, et al. Prospects of hybrid materials composed of MOFs and hydride-forming metal nanoparticles for lightduty vehicle hydrogen storage, Appl. Mater. Today 25 (2021) 101208. https://doi.org/10.1016/j. apmt.2021.101208.
- [39]. M. El Khatabi, M. Bhihi, S. Naji, et al. Study of doping effects with 3d and 4d-transition metals on the hydrogen storage properties of MgH2, Int. J. Hydrogen Energy 41 (2016) 4712-4718. https:// doi.org/10.1016/j.ijhydene.2016.01.001.
- [40]. J. Hu, W. Wang, L. Xie, et al. Effects of NH4+ doping on the hydrogen storage properties of metal hydrides, Int. J. Hydrogen Energy 48 (2023) 19153–19159. https://doi.org/10.1016/j. ijhydene.2023.01.348.
- [41]. M. Ali, Z. Bibi, M.W. Younis, et al. Enhancement of hydrogen storage characteristics of Na2CaH4 hydrides by introducing the Mg and Be dopant: A first-principles study, Int. J. Hydrogen Energy 70 (2024) 579-590. https://doi.org/10.1016/j.ijhydene.2024.05.169.
- [42]. I. Cabria, M.J. López, J.A. Alonso. The optimum average nanopore size for hydrogen storage in carbon nanoporous materials, Carbon 45 (2007) 2649-2658. https://doi.org/10.1016/j. carbon.2007.08.003.

- [43]. Á. Berenguer-Murcia, J.P. Marco-Lozar, D. Cazorla-Amorós. Hydrogen storage in porous materials: Status, milestones, and challenges, Chem. Rec. 18 (2018) 900-912. https://doi.org/10.1002/tcr.201700067.
- [44]. P. Ramirez-Vidal, G. Sdanghi, A. Celzard, et al. High hydrogen release by cryo-adsorption and compression on porous materials, Int. J. Hydrogen Energy 47 (2022) 8892-8915. https:// doi.org/10.1016/j.ijhydene.2021.12.235.
- [45]. M. Mohan, V.K. Sharma, E.A. Kumar, et al. Hydrogen storage in carbon materials - A review, Energy Storage 1 (2019) e35. https://doi. org/10.1002/est2.35Z.
- [46]. Z. Chen, K.O. Kirlikovali, K.B. Idrees, et al. Porous materials for hydrogen storage, Chem. 8 (2022) 693–716. https://doi.org/10.1016/j. chempr.2022.01.012.
- [47]. Y. Wang, Y. Xue, A. Züttel. Nanoscale engineering of solid-state materials for boosting hydrogen storage, Chem. Soc. Rev. 53 (2024) 972–1003. https://doi.org/10.1039/D3CS00706E.
- [48]. L.A. Mahmoud, J.L. Rowlandson, D.J. Fermin, et al. Porous carbons: a class of nanomaterials for efficient adsorption-based hydrogen storage, RSC Appl. Interfaces (2025). https://doi.org/10.1039/ D4LF00215F.
- [49]. V. Fierro, A. Szczurek, C. Zlotea, et al. Experimental evidence of an upper limit for hydrogen storage at 77 K on activated carbons, Carbon 48 (2010) 1902–1911. https://doi.org/10.1016/j.carbon.2010.01.052.
- [50]. L. Schlapbach, A. Züttel. Hydrogen-storage materialsformobileapplications, Nature 414 (2001) 353–358. https://doi.org/10.1038/35104634.
- [51]. S. Elyasi, S. Saha, N. Hameed, et al. Emerging trends in biomass-derived porous carbon materials for hydrogen storage, Int. J. Hydrogen Energy 62 (2024) 272–306. https://doi.org/10.1016/j. ijhydene.2024.02.337.
- [52]. S. Stelitano, G. Conte, A. Policicchio, et al. Pineconederived activated carbons as an effective medium for hydrogen storage, Energies 13 (2020) 2237. https://doi.org/10.3390/en13092237.
- [53]. A.I. Sultana, M.T. Reza. Investigation of hydrothermal carbonization and chemical activation process conditions on hydrogen storage in loblolly pine-derived superactivated hydrochars, Int. J. Hydrogen Energy 47 (2022) 26422–26434. https://doi.org/10.1016/j.ijhydene.2022.04.128.
- [54]. M.M. Alam, M.A. Hossain, M.D. Hossain, et al. The potentiality of rice husk-derived activated carbon: From synthesis to application, Processes 8 (2020) 203. https://doi.org/10.3390/pr8020203.

- [55]. H. Chen, H. Wang, Z. Xue, et al. High hydrogen storage capacity of rice hull based porous carbon, Int. J. Hydrogen Energy 37 (2012) 18888–18894. https://doi.org/10.1016/j.ijhydene.2012.09.035.
- [56]. K. Komatsu, H. Li, Y. Kanma, et al. Increase in H2 storage capacity of nanoporous carbon fabricated from waste rice husk via improving the mode of the reaction mixture cooling down, J. Mater. Res. Technol. 12 (2021) 1203–1211. https://doi.org/10.1016/j.jmrt.2021.03.060.
- [57]. B. Lesbayev, N. Rakhymzhan, G. Ustayeva, et al. Preparation of nanoporous carbon from rice husk with improved textural characteristics for hydrogen sorption, J. Compos. Sci. 8 (2024) 74. https://doi.org/10.3390/jcs8020074.
- [58]. S. Cheng, X. Cheng, M.H. Tahir, et al. Synthesis of rice husk activated carbon by fermentation osmotic activation method for hydrogen storage at room temperature, Int. J. Hydrogen Energy 62 (2024) 443–450. https://doi.org/10.1016/j.ijhydene.2024.03.092.
- [59]. L.F. Wang, R.T. Yang. Hydrogen storage on carbon-based adsorbents and storage at ambient temperature by hydrogen spillover, Catal. Rev. 52 (2010) 411–461. https://doi.org/10.1080/016149 40.2010.520265.
- [60]. T.Y. Chung, C.S. Tsao, H.P. Tseng, et al. Effects of oxygen functional groups on the enhancement of the hydrogen spillover of Pd-doped activated carbon, J. Colloid Interface Sci. 441 (2015) 98– 105. https://doi.org/10.1016/j.jcis.2014.10.062.
- [61]. V.B. Parambhath, R. Nagar, S. Ramaprabhu. Effect of nitrogen doping on hydrogen storage capacity of palladium decorated graphene, Langmuir 28 (2012) 7826–7833. https://doi.org/10.1021/ la301232r.
- [62]. B.P. Vinayan, K. Sethupathi, S. Ramaprabhu. Facile synthesis of triangular shaped palladium nanoparticles decorated nitrogen doped graphene and their catalytic study for renewable energy applications, Int. J. Hydrogen Energy 38 (2013) 2240–2250. https://doi.org/10.1016/j.ijhydene.2012.11.091.
- [63]. W. Zhao, L. Luo, T. Chen, et al. Synthesis and characterization of Pt-N-doped activated biocarbon composites for hydrogen storage, Compos. Part B: Eng. 161 (2019) 464–472. https://doi.org/10.1016/j.compositesb.2018.12.122.

### Сведения об авторах

**Б.Т. Лесбаев** — кандидат химических наук, профессор, главный научный сотрудник Института проблем горения, Алматы, Казахстан

E-mail: lesbayev@mail.ru ORCID: 0000-0002-0309-1935

**Н.Б. Рахымжан** — научный сотрудник Института проблем горения, Алматы, Казахстан

E-mail: nurrts@mail.ru ORCID: 0000-0003-4342-907X

**М. Ауельханкызы** — PhD, ведущий научный сотрудник Института проблем горения, Алматы, Казахстан

E-mail: auyelkhankyzy@gmail.com ORCID: 0000-0002-9223-1732

**Г.С. Устаева** — научный сотрудник Института проблем горения, Алматы, Казахстан E-mail: gaukhar.sakenovna@gmail.com ORCID: 0000-0001-7857-0327

**А.Б. Толынбеков** — научный сотрудник Института проблем горения, Алматы, Казахстан E-mail: a.tolynbekov@gmail.com ORCID: 0000-0002-2664-888X

**А. Жамаш** — магистрант, специалист высшего уровня Института проблем горения, Алматы, Казахстан

E-mail: aasszhamashaass@gmail.com

ORCID: 0009-0001-2710-5377

**Лю Ян** — магистрант 2 курса КазНУ им. аль-Фараби, Китай (КНР)

E-mail: liuyang100814@163.com ORCID: 0009-0001-1097-8841

**М. Нажипкызы** — кандидат химических наук, профессор, ведущий научный сотрудник

Института проблем горения E-mail: meruert82@mail.ru ORCID: 0000-0002-3716-0476 Hydrogen Storage Technologies: Achievements, Challenges, and Development Prospects

B. Lesbayev<sup>1,2\*</sup>, N. Rakhymzhan<sup>1</sup>, M. Auyelkhankyzy<sup>1,2</sup>, G. Ustayeva<sup>1,2</sup>, A. Tolynbekov<sup>1,2</sup>, A. Zhamash<sup>1,2</sup>, Liu Yang<sup>2</sup>, M. Nazhipkyzy<sup>1,2</sup>

<sup>1</sup>Institute of Combustion Problems, Bogenbay Batyr st., 172, Almaty, Kazakhstan <sup>2</sup>al-Farabi Kazakh National University, al-Farabi ave., 71, Almaty, Kazakhstan

#### **ABSTRACT**

Hydrogen is considered one of the most promising energy resources of the 21st century due to its environmentally friendly use and potential for integration into sustainable energy. However, the widespread adoption of hydrogen energy is hampered by the lack of efficient and safe storage technologies. This paper presents an overview of modern approaches to hydrogen storage with an emphasis on physical and chemical methods, as well as the use of nanostructured porous materials. Traditional storage technologies are considered – in the form of compressed gas and liquid hydrogen, which have already found practical application, but are characterized by high energy consumption, limited bulk density and safety issues. Attention is paid to the storage of hydrogen in metal hydrides, which have an acceptable potential capacity in practical applications. However, their use is limited by the need for high desorption temperatures, slow kinetics and low reversibility of processes. New areas associated with the use of nanoporous carbon, including materials obtained from biomass and non-traditional raw materials, are considered. High specific surface area, developed microporous structure and the possibility of functional modification make such materials promising for adsorption storage of hydrogen. Examples of experimental works demonstrating the achievement of capacity over 10 wt.% under optimal conditions are given. It is concluded that further development of hydrogen technologies requires an integrated approach, including the improvement of existing systems, the search for new materials and the application of sustainable technologies for the use of renewable raw materials.

Keywords: hydrogen storage, intermetallics, metal hydrides, nanoporous carbon, «spillover» effect.

Сутегін сақтау технологиялары: жетістіктер, мәселелері және даму болашағы

Б.Т. Лесбаев<sup>1,2\*</sup>, Н.Б. Рахымжан<sup>1</sup>,М. Ауельханкызы<sup>1,2</sup>, Г.С. Устаева<sup>1,2</sup>, А.Б. Толынбеков<sup>1,2</sup>, А. Жамаш<sup>1,2</sup>, Лю Ян<sup>2</sup>, М. Нажипкызы<sup>1,2</sup>

 $^{1}$ Жану проблемалары институты, Бөгенбай батыр к., 172, Алматы, Қазақстан  $^{2}$ Әл-Фараби атындағы ҚазҰУ, әл-Фараби д., 71, Алматы, Қазақстан

#### **АҢДАТПА**

Сутегі XXI ғасырдың ең перспективалы энергия көздерінің бірі ретінде қарастырылады, өйткені ол экологиялық таза және тұрақты энергетикаға ықпалдасу перспективасы үлкен. Алайда сутегі энергетикасын кеңінен енгізуді оның тиімді әрі қауіпсіз сақтау технологияларының жеткіліксіздігі тежеп отыр. Бұл жұмыста сутегіні сақтау бойынша қазіргі заманғы тәсілдерге шолу жасалған, атап айтқанда физикалық және химиялық әдістерге, сондай-ақ наноқұрылымды кеуекті материалдарды қолдануға ерекше назар аударылған. Сығылған газ және сұйық сутегі түрінде сақтау сияқты дәстүрлі технологиялар қарастырылған. Олар іс жүзінде қолданылуда, бірақ жоғары энергия шығыны, көлемдік тығыздығының шектеулігі және қауіпсіздік мәселелерімен сипатталады. Қатты денелерде, оның ішінде металлогидридтерде сақтау мәселесіне де көңіл бөлінген, себебі олардың практикалық қолдануда қолайлы перспективті сыйымдылығы бар. Алайда мұндай материалдарды пайдалану сутегіні десорбциялау үшін жоғары температураның қажет болуы, кинетиканың баяулығы және процестердің қайтымдылығының төмендігімен шектеледі. Жаңа бағыттар қатарында нанокеуекті көміртекті материалдарды, оның ішінде биомассадан және дәстүрлі емес шикізаттан алынған материалдарды қолдану атап өтілген. Жоғары меншікті беткі ауданы, дамыған микрокеуекті құрылым және функционалды модификация мүмкіндігі мұндай материалдарды адсорбциялық сақтауда перспективалы етеді. Оптималды жағдайларда 10 мас.% асатын сыйымдылыққа қол жеткізілгенін көрсететін эксперименттік жұмыстардың мысалдары келтірілген. Қорытындылай келе, сутегі технологияларын одан әрі дамыту кешенді тәсілді қажет етеді, оған қолданыстағы жүйелерді жетілдіру, жаңа материалдарды іздеу және жаңартылатын шикізатты пайдаланудың тұрақты технологияларын қолдану жатады.

**Түйін сөздер:** сутегіні сақтау, интерметаллидтер, металлогидридтер, нанокеуекті көміртек, «spillover» эффектісі.