УДК: 662.1

МЕДЛЕННОГОРЯЩИЕ МАЛОГАЗОВЫЕ ПИРОТЕХНИЧЕСКИЕ СИСТЕМЫ

А.Н. Гавриленко¹, Е.Э. Рыжкова¹, Л.В. Кимадиева¹, О.Ю. Головченко¹, С.Х. Акназаров^{1,2}

¹Казахский Национальный Университет им. аль-Фараби ²Институт проблем горения, Казахстан, 050012, Алматы, ул. Богенбай батыра, 172

Аннотация

В данной работе приведены исследования кинетических параметров горения системы Pb_3O_4-Si . Установлены зависимости скорости горения от содержания и дисперсности кремния. Установлены макрокинетические характеристики горения образцов в зависимости от содержания связующих: канифоль, глицерин, нитролак НЦ-218. Определены граничные условия применения суриковых пиротехнических систем с применением связующих и пластификаторов.

Ключевые слова: пиротехника, система, горение, кремний, канифоль, глицирин

Введение

Безгазовые (точнее, малогазовые) составы используют в различных системах и устройствах, где необходимо точное отмеривание промежутка времени перед реализацией какого-либо основного термического процесса, а также в некоторых специальных нагревательных изделиях.

Малогазовые пиротехнические системы рассчитаны на небольшое время горения. Отличительное свойство, присущее большинству таких составов, - малая зависимость скорости горения от внешнего давления. Также они должны иметь небольшой температурный коэффициент скорости горения. Составы такого типа должны легко воспламеняться и безотказно воспламенять следующее звено огневой цепи.

При горении малогазового состава количество выделяющихся газов настолько невелико, что ими можно пренебречь, поэтому подобные составы были названы безгазовыми.

В качестве горючих в безгазовых составах используют порошки циркония (и его сплавов), ниобия, металлов средней калорийности: марганца, вольфрама, а также порошки бора и кремния. В более ранних патентах в качестве окислителей указывались оксиды свинца - Pb_3O_4 и PbO_2 .

Комбинация таких окислителей с порошком циркония образует быстро горящие составы, дающие в соответствующих изделиях время горения, выражающееся в миллисекундах. [1]

В современной зарубежной литературе в качестве окислителей для безгазовых составов приводятся чаще всего хроматы бария и свинца (см. табл. 1).

Таблица 1 – Окислители для безгазовых составов

Состав №	Горючее		BaCrO ₄	PbCrO ₄	KClO ₄
Состав 1	Zr/Ni сплав	54	31	_	15
Состав 2	Бор аморфный	5	95	_	_
Состав 3	Бор аморфный	10	90	_	-
Состав 4	Мп (мет.)	44	3	53	-
Состав 5	Мп (мет.)	37	20	43	-
Состав 6	Мп (мет.)	33	31	36	-
Состав 7	Nb	15	85	_	_
Состав 8	Nb	50	50	_	_
Состав 9	Ta	29	71	_	-
Состав 10	Ta	50	50	_	_

В некоторых составах содержится также второй окислитель — перхлорат калия (10-15 %).

Окислитель при разложении не должен давать газообразных продуктов. Так, например, двойная смесь Zr-BaCrO₄ в результате горения образует только твердые и тугоплавкие оксилы металлов:

$$3Zr + 4BaCrO_4 = 3ZrO_2 + 4BaO + 2Cr_2O_3$$
.

В качестве связующих в смесях малогазовых пиротехнических составов обычно используют льняное масло, глицерин, ПВА.

Малогазовые составы чаще всего используются в прессованном виде, причем давление прессования может достигать 2800 кгс/см². [2]

Экспериментальная часть

Для исследования процессов горения малогазовых пиротехнических составов нами была выбрана известная система [3], содержащая в качестве окислителя свинцовый сурик (Pb_3O_4) , в качестве горючего кремний. Для установления влияния связующего на скорость

горения составов использовались нитроцеллюлозный лак НЦ-218, спиртовый раствор канифоли, глицерин.

Технический кремний измельчался в шаровой мельнице, после чего полученный порошок классифицировали с использованием сит с различными размерами ячеек. Для проведения исследований использовалась фракция менее 50 мкм.

Лак НЦ-218, свинцовый сурик и глицерин предварительной подготовки не требовали. Канифоль использовали в виде 50%-ного раствора в 96 %-ном этиловом спирте.

Образцы готовились в виде пресссованных изделий d = 15 мм, длиной 35 - 45 мм. Инициирование горения проводили поджиганием насыпанного на торец таблеток магниевого порошка, термита или с помощью бутановой горелки.

Скорость горения измеряли термопарным способом. Измерение скорости горения проводили на установке, представленной на рисунке 1. Термопары К-типа помешались в отверстия на расстоянии 10 мм друг от друга. Скорость горения определяли по времени прохождения фронта волны горения между этими точками.

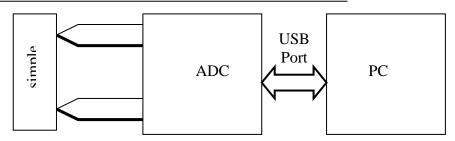


Рис. 1 – Схема установки для определения скорости горения образцов термопарным методом

Одним из важнейших параметров, характеризующих надежность срабатывания замедлительной пиротехнической цепи, является способность горения в сформированном заряде, имеющем определенные геометрические параметры. Характеристикой этого может быть критическая толщина горения пиротехнической смеси. Толщину горения измеряли по методике, описанной в [3,4].

Результаты и обсуждения

Модельная система, выбранная нами для исследований, является типичной пиротехнической смесью, где в качестве горючего использован кремний, а в качестве окислителя —

свинцовый сурик. Ниже приведены реакции, которые могут происходить при стехиометрическом соотношении указанных компонентов.

$$Pb_3O_4 + 2Si = 3Pb + 2SiO_2$$
 92,5/7,5 (1)

$$Pb_3O_4 + Si = Pb + 2PbO + SiO_2$$
 96/4 (2)

$$2Pb_3O_4+3Si=4Pb+2PbSiO_3+SiO_2$$
 94/6 (3)

При проведении экспериментов было установлено, что изучаемые системы начинают гореть при содержании кремния не мене 5 масс. %, хотя по расчетам это соотношение уже близко к стехиометрическому соотношению (2). Это можно объяснить прохождением

реакции горения в диффузионном режиме, когда не весь кремний доступен для синтеза. При дальнейшем увеличении содержания кремния скорость горения монотонно возрастала и вы-

ходила на плато. Зависимость скорости горения от соотношения компонентов представлена на рисунке 2.

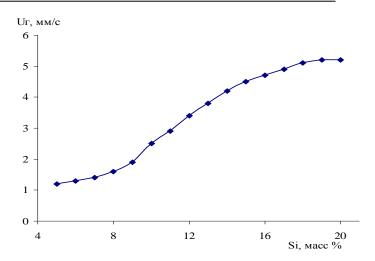


Рис. 2 – Зависимость скорости горения системы Pb₃O₄ – Si от содержания кремния

Для выяснения влияния дисперсности кремния на кинетические характеристики проводили измерение скорости горения при стехиометрическом соотношении (2) компонентов с кремнием различных фракций. Было установлено, что кремний дисперсностью

больше 150 мкм в принципе не горит в данных условиях. При дисперсности кремния 90 мкм и менее скорость горения возрастала с 1,3 до 4 мм/сек. Зависимости скорости горения от дисперсности кремния приведены на рисунке 3.

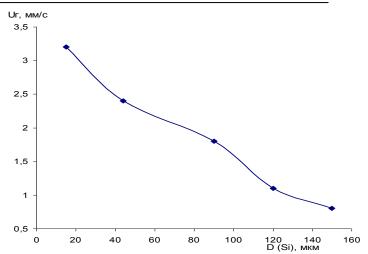


Рис. 3 – Зависимость скорости горения системы Pb₃O₄ – Si от дисперсности кремния

Из рисунка 3 видно, что дисперсность кремния оказывает значительное влияние на скорость горения исследуемой системы. При уменьшении дисперсности скорость горения значительно возрастает, вместе с тем увеличивается чувствительность состава к огневому импульсу.

Следует отметить, что системы с дисперсностью кремния 44-90 мкм имеют очень низкую восприимчивость к тепловому воздействию и имеют склонность к затуханию. Очевидно, это связано с тем, что температура плавления кремния, соответствующая 1420^{0} C, несколько выше, чем температура горения

изучаемых систем, соответствующая 800-1200°C. Вследствие этого при распространении волны горения кремний не мог переходить в классическое жидкое состояние, и реакция проходила в неоптимальных условиях.

Для более полного анализа системы Pb_3O_4 -Si был проведен термодинамический анализ равновесных продуктов реакций в программе Terra (рис. 4).

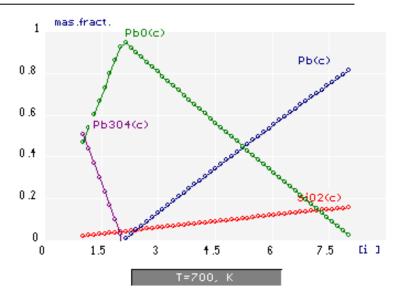


Рис. 4 — Равновесный фазовый состав продуктов горения в системе $Pb_3O_4 - Si$

В изучаемой системе кремний всегда находится в окисленной форме — SiO_2 (рис. 4). Свинцовый сурик монотонно расходуется до образования окиси свинца, а затем при дальнейшем увеличении содержания кремния до элементарного свинца.

Таким образом, изучаемая система является простой и вполне понятной как по механизму химических процессов, так и по конечным продуктам взаимодействия.

Помимо термокинетических характеристик для изучаемой системы, исследовался специфический параметр — критическая толщина горения. Этот параметр характеризует способность смеси гореть в минимально возможном слое, при высокой степени надежности и незначительном влиянии теплоотвода в окружающую среду на кинетические параметры.

Зависимости критической толщины горения от соотношения компонентов приведены на рисунке 5. Справа шкала значений толщины горения увеличена. Как видно из рисунка, при увеличении содержания кремния от 4 до 8 масс. % критическая толщина горения изменяется значительно, при дальнейшем увеличении кремния в системе толщина горения практически не изменяется, что может говорить о

практическом насыщении энергетикой изучаемой системы. Таким образом, изучаемая система при содержании кремния до 6-8 масс. % не может быть использована в изделиях диаметром меньше 8-15 мм, при дальнейшем увеличении кремния минимальный диаметр изделий с использованием замедлительной смеси может быть уменьшен до 6-10 мм.

Ввиду того, что компоненты изучаемой пиротехнической смеси не обладают пластической деформацией и, соответственно, прессование их не позволяет получить прочное изделие, были проведены исследования влияния связующих и цементаторов на кинетические характеристики горения.

Использование систем с жидкими цементаторами и пластификаторами в количестве до 0,5 масс. % не изменяло реологических свойств шихты.

Наиболее оптимальным найдено содержание цементаторов в количестве 0,5-3 масс %, при этом изделия, полученные прессованием под давлением 120-250 МПа, имели достаточную механическую прочность, не имели сколов, трещин и разрушений. Предел прочности на сжатие полученных изделий приведен на рисунке 6.

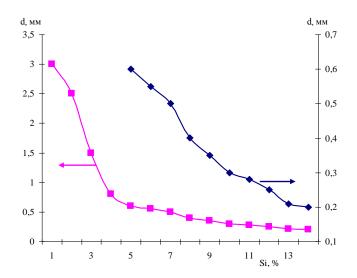


Рис. 5 – Зависимость критической толщины горения образца от содержания кремния

Как видно из рисунка, системы с глицерином имеют низкую механическую прочность во всем интервале содержания в системе. Это вполне понятно, так как глицерин при этих условиях является жидкостью и практически не участвует в структурообразовании композитного тела. При содержании глицерина более 6 % и давлении прессования более 100 МПа излишек глицерина при прессовании выдавливается из прессформы. Такая же картина наблюдается и для нитролака и спиртово-

го раствора канифоли. Тем не мене после высушивания образцы с нитролаком и канифолью показывают вполне удовлетворительные механические характеристики, достаточные для проведения каких-либо манипуляций с образцами. Образцы на нитролаке показывают примерно вдвое большую прочность на сжатие, чем на канифоли, что можно объяснить наличием в нитролаке пластифицирующих компонентов, которые отсутствуют в канифоли.

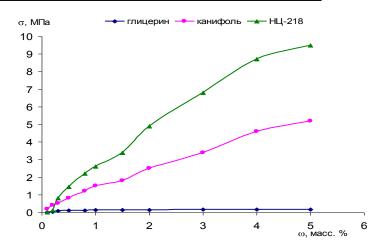


Рис. 6 – Зависимость предела прочности образцов на сжатие от содержания цементаторов в стехиометрической системе (1)

Изучаемая система по определению является безгазовой, вводимые цементаторы, в принципе, не должны были оказывать существенного влияния на скорость горения. Однако,

экспериментальные данные, представленные на рисунке 7, показывают, что скорость горения пропорционально зависит от содержания цементатора в образце.

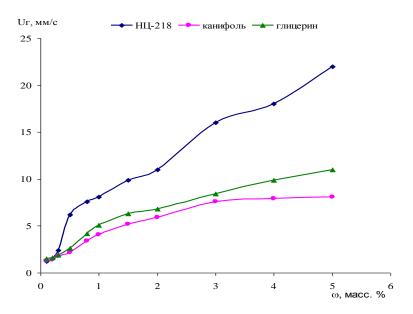


Рис. 7 – Зависимость скорости горения образцов от содержания цементаторов в стехиометрической системе (1)

Наибольшая скорость горения соответствует образцам с НЦ-218, так как в его составе присутствует твердый остаток — колоксилин, при разложении которого выделяется теплота, а также разогретые газообразные продукты, которые под действием диффузии проникают вглубь системы. Вследствие этого происходит предварительный нагрев компонентов смеси и увеличивается начальная температура.

Образцы с глицерином имеют скорость горения ниже, чем у образцов с НЦ-218, но выше, чем — с канифолью. Это можно объяснить тем, что глицерин является монофазой, со сравнительно низкой температурой кипения и при прохождении фронта волны горения он, испаряясь, производит также предварительный нагрев компонентов смеси. Особенно ярко это выражено в системах со стальной оболочкой, где газы могут двигаться только в сторону пористых компонентов смеси.

Канифоль требует затраты энергии на процессы пиролиза и карбонизации, которая берется из теплоты горения основной смеси. Вследствие этого тепловой поток с отходящими газами значительно меньше, чем у глицерина и скорости горения, соответственно, также несколько ниже.

В результате проведенных исследований выяснено, что добавки пластификаторов и цементаторов в модельную суриковую систему переводят последнюю из безгазовых в газифи-

цирующую пиротехническую систему. Кроме того, наряду с увеличением скорости горения, в этих системах появляется фактор неопределенности, связанный с количеством, возрастом и состоянием пластификатора.

Заключение

На основании проведенных исследований модельной пиротехнической системы Pb_3O_4-Si установлено, что:

- ▶ наименьшая устойчивая скорость горения в системе составляет 1,3 мм/с при содержании кремния 8% и дисперсности 90-150 мкм:
- система, не содержащая цементирующих компонентов, обладает крайне низкими прочностными характеристиками, добавка связующих даже в небольших количествах значительно увеличивает прочность образцов, что, в свою очередь, увеличивает технологичность готового изделия;
- рабавка связующего значительно влияет на скорость горения системы, что оказывает нежелательный эффект на характеристики готового изделия; в то же время добавка связующего необходима для увеличения технологичности изготовления. В связи с этим необходимо подбирать оптимальное соотношение между связующим компонентом и основной замедлительной системой для обеспе-

чения необходимого времени горения при достаточной технологичности производства.

Литература

- 1. Шидловский А.А. Основы пиротехники. М.: Машиностроение. 1973. 256 с.
- 2. Ладягин Ю.О. Введение в пиротехнику. М.: Оборонгиз. 1997. -132 с.
- 3. Вонгай И. М. СВ синтез композиционных материалов на основе карбидов кремния и титана: диссертация кандидата химических наук. Алматы. 2009. -187 с.
- 4. А.И. Гольбиндер. Лабораторные работы по курсу теории взрывчатых веществ. М.: РОСВУЗИЗДАТ. 1963. 253 с.

Дата поступления 15 января 2012 г.

SLOW BURNING LITTLE GAS PYROTECHNIC OF SYSTEM A.N. Gavrilenko¹, E. Rijkova¹, L.V. Kimadieva¹, O.Yu. Golovchenko¹, S.Kh. Aknazarov^{1,2}

¹ Al-Farabi Kazakh National University
²Institute of combustion problems,
172, Bogenbay batira str., Almaty, 050012, Republic of Kazakhstan

Abstract

This work contains research of kinetic characteristics of Pb₃O₄ – Si system's burning. Dependence of rate of combustion from amount and dispersion of silicon was measured. Found microkinetic combustion characteristics of samples depending on amount of colophony, glycerine and nitrocellulose lacquer. Using limits of red lead pyrotechnic systems with binders and plasticizing agents were defined.

БАЯУ ЖАНАТЫН АЗ ГАЗДЫ ПИРОТЕХНИКАЛЫҚ ЖҮЙЕЛЕР

А.Н. Гавриленко¹, Е.Э. Рыжкова¹, Л.В. Кимадиева¹, О.Ю. Головченко¹, С.Х. Акназаров^{1,2}

¹ Әл-Фараби атындағы Қазақ Ұлттық университеті ² Жану проблемалары институты

Аннотация

РЬ₃О₄ — Si жүйесiнiң жану кинетикалық параметрлерiнiң зерттеуi ұсынылды. Кремнийдiң ұнтақтылығы мен құрамыны бойынша жану жылдамдылығының тәуелдiлiктерi орнатылған. Бiрiктiргiштiң құрамына байланысты: канифоль, глицерин НЦ-218 жанған үлгiлердiң жану макрокинетикалық сипаттамалары орнатылған. Байланыстырушы және пластификаторы пайдаланып пиротехникалық суриковтық жүйелердi пайдалану үшiн шекаралық шарттар анықталды.