УДК: 662.1/.4

ПРЯМЫЕ МЕТОДЫ ОБНАРУЖЕНИЯ ВЗРЫВЧАТЫХ ВЕЩЕСТВ

В.М. Грузнов

Институт нефтегазовой геологии и геофизики им. А.А. Трофимука СО РАН

Аннотация

В работе дана краткая характеристика существующих современных методов обнаружения взрывчатых веществ. Приведены данные прямых методов обнаружения: газоаналитические; с использованием нейтронного облучения, гамма-активационного анализа; на основе ядерного квадрупольного резонанса и оптической спектроскопии.

Ключевые слова: взрывчатые вещества, нефть, нейтронное излучение, анализ

Введение

Методы обнаружения взрывчатых веществ (ВВ) можно разделить на прямые и косвенные. В прямых методах обнаружение идет по определению химического или элементного состава обнаруживаемых ВВ. Косвенные основаны на методах интроскопии визуализацией объектов контроля обнаружение ВВ осуществляется по косвенным признакам: форме, месту расположения в контролируемых объектах. В статье рассмотрены прямые методы: газоаналитические; с использованием нейтронного облучения, гамма-активационного анализа; основе ядерного квадрупольного резонанса и оптической спектроскопии. Большее внимание уделено отечественным работам, соответствующим мировому уровню.

Прямые методы обнаружения ВВ

Газохроматографические методы основаны на использовании разделительных колонок для селективного обнаружения ВВ. Для быстрого разделения за время 10-40 секунд в конце 1980-х годов были предложены поликапиллярные колонки. До начала 1980-х г. для сбора и доставки паров ВВ с поверхности обследуемых объектов в прибор использовали прямое всасывание воздуха. Такой отбор проб эффективен при малых расстояниях (несколько мм) между объектом и всасывающим патрубком. Это приводит к малости площади однократного сбора пробы и к невысокой скорости обследования объектов. В начале 1980-х годов впервые был предложен отечественный вихревой дистанционный способ сбора пробы и транспортировки ее в прибор. Ручной

вихреобразующий аппарат обеспечивает эффективный забор пробы с дистанции 15-20 см до объекта. При этом увеличивается в 20 и более раз площадь одновременного сбора пробы по сравнению с прямым всасыванием, что значительно увеличивает скорость обследования.

Для понижения порогов обнаружения ВВ к середине 1980-х гг. были разработаны способы и устройства быстрого концентрирования и ввода пробы с использованием металлических сеток.

На основе перечисленных технологий были созданы портативные экспрессные хроматографические обнаружители серии ЭХО. Обнаружитель ЭХО-М из этой серии обеспечивает порог обнаружения паров ТНТ 10^{-14} г/см³, время анализа проб составляет 10-20 с. В 1995 г. хроматограф ЭХО-М был принят на вооружение МВД России и зарегистрирован в Государственном реестре средств измерений.

Нужно отметить, что к 1988 г. параллельно с отечественной разработкой ЭХО-М был создан американский обнаружитель Egis-3000, аналогичный по назначению, но значительно уступающий по потребительским характеристикам. Так, вес этого прибора — 100 кг, энергопотребление — 1 кВт, для сравнения: вес ЭХО-М — 9 кг, а потребление — 40 Вт.

Возможность понижения порога обнаружения паров ТНТ прибором ЭХО-М до рекордного на сегодня значения 10^{-15} г/см³ была достигнута путем использования концентратора большого объема.

Наличие в газовых хроматографах, в том числе, и в приборе ЭХО-М инертного газаносителя ограничивает возможности полевых работ необходимостью периодической

подзарядки встроенного баллона с газом. В начале 2000-х годов в КТИ ГЭП СО РАН (Новосибирск) на замену ЭХО-М был создан обнаружитель ЭХО-В с воздухом в качестве газа-носителя, в котором отсутствует баллон с

газом. Очистка воздуха осуществляется встроенным фильтром. Внешний вид прибора с вихревым пробоотборником приведен на рис. 1, а момент обследования автомобиля — на рис. 2.

Рис.1 – Вихревой пробоотборник

Рис. 2 – Установка вихревого пробоотборника на автотранспорт

Портативная масс-спектрометрия по сравнению с другими аналитическими методами сочетает высокую чувствительность и информативность химического анализа, что может быть использовано при создании высокоэффективной аппаратуры для обнаружения ВВ с низким уровнем ложных обнаружений. Ниже приведена краткая характеристика масс-спектрометрии, подготовленная А.Л. Макасем [1].

Высокие аналитические характеристики обнаружения взрывчатых веществ продемонстрированы зарубежными исследователями в конце 1970-х гг. с помощью различных методов ионизации при атмосферном давлении (ИАД). Отечественные исследования масс-

спектрометрии с ИАД начались в 1980-х годах. Был открыт новый метод анализа нелетучих соединений ЭРИАД (ИАП РАН, С.Петербург), изобретен времяпролетный массспектрометр с ортогональным вводом (ИНЭПХФ РАН, Москва) и впервые осуществлен тандем «спектрометр приращения ионной подвижности — масс-спектрометр» с возможностью предварительного разделения ионов на входе в масс-спектрометр (СО РАН, г. Новосибирск).

Несмотря на высокие чувствительность и селективность масс-спектрометрии, этот метод практически не применяют для обнаружения ВВ в полевых условиях. Основные причины: относительно большие размеры и

вес приборов, недостаточная портативность, высокая стоимость, сложность в эксплуатации.

Впервые миниатюризация масс-спектрометра с ИАД была представлена в 2004 г. [2]. В приборе был применен источник ионов с низкой газовой нагрузкой и миниатюрный масс-анализатор монопольного типа. Общая масса экспериментального образца с вакуумной системой составила около 25 кг.

В отличие от задач обнаружения ВВ для криминалистических целей требуется универсальная аппаратура на основе хромато-массспектрометрии. Первый российский мобильный хромато-масс-спектрометр (МХМС), отвечающий этим требованиям, разработан в 2002 г. в КТИ ГЭП СО РАН. Прибор обладает всеми аналитическими возможностями лабораторных аналогов, транспортабелен, устойчив к внешним воздействиям и ориентирован на быстрый анализ следов органических веществ в различных объектах в полевых условиях. В 2002 г. прибор поставлен на снабжение в МО РФ и сертифицирован в Госстандарте РФ.

Спектрометрия приращения ионной подвижности как способ разделения ионов в газе с помощью знакопеременного периодического несимметричного по полярности электрического поля, предложен М.П. Горшковым (Новосибирск) в 1980 г.. Метод СПИП реалиизован в ряде портативных отечественных приборов с порогом обнаружения паров ТНТ 10⁻¹³ г/см³: ШЕЛЬФ-ДС, Пилот-М (Москва), МО - 2М (Новосибирск), КРОН-ВВ, которые используют в работе различных спецслужб.

В начале 2000-х гг. в КТИ ГЭП СО РАН предложен вариант СПИП с замкнутым газовым контуром. Такая схема обеспечивает лучший на сегодня порог обнаружения ТНТ – $3 \cdot 10^{-14} \, \text{г/см}^3$ среди спектрометрических обнаружителей с временем отклика несколько секунд.

Элементный анализ с облучением нейтронами (раздел написан совместно с Б.Г. Титовым) используется для обнаружения ВВ на основе определения отношений элементов С/О, С/Н, N/Н в контролируемом объеме. Содержание элементов определяется по результатам анализа продуктов ядерных реакций, возникающих при облучении объектов нейтронами.

До 1980-х гг. в качестве источника нейтронов в обнаружителях ВВ использовали

изотоп ²⁵²Cf. Чувствительность такого метода ограничивается из-за наложения гамма-излучений различных ядерных реакций. Этого недостатка лишен метод с использованием импульсного генератора нейтронов. Отечественные работы с импульсным облучением нейтронами были начаты в начале 1980-х годов с создания высокочастотного дейтерийтритиевого (ДТ) генератора нейтронов с потоком 10^8 н/с в импульсе, энергией нейтронов 14 МэВ (ВНИИЯГГ, Москва) и первого действующего отечественный макета (ИГГ СО АН СССР) обнаружителя ВВ в грунте. Первый обнаружитель обеспечивал предварительное обнаружение BB за 1 с по аномальному содержанию водорода и последующее уточнение наличия BB за 300 с по обнаружению линии излучения азота в ядерной реакции (n, \square) . Была продемонстрирована возможность обнаружения мины TS-2.5 (масса BB 2,5 кг) в грунте на глубине до 15 см. В середине 1990-х гг. фирмой РАТЭК (Санкт-Петербург) была создана аналогичная по принципу действия отечественная нейтронная установка УВП-5101 для контроля авиабагажа. Среднее время обнаружения 150 г ВВ составило 20 с.

В конце 1990-х гг. была создана аппаратура NIGAS (КТИ ГЭП СО РАН совместно с фирмой BSA, Германия) для определения в полевых и стационарных условиях BB и отравляющих веществ в артиллерийских снарядах перед их уничтожением. Аппаратура испытана на снарядах различных калибров: 76, 122, 125, 152 мм и используется при уничтожении снарядов времен первой мировой войны.

Развитием нейтронного метода обнаружения являются методы с «мечеными» нейтронами (ММН), в которых используется регистрация сопутствующих продуктов ядерных реакций в источниках нейтронов: гамма квантов в изотопном источнике ²⁵²Cf и альфа частиц в ДТ-нейтронном генераторе.

Первые отечественные результаты по обнаружению BB с генератором меченых нейтронов получены в Радиевом институте. Создан действующий макет аппаратуры SENNA, обеспечивающий обнаружение 100 г BB за несколько десятков секунд и последующую идентификацию BB за 3 мин.

Гамма-активационный метод для обнаружения ВВ предложен первоначально «на просвет» за рубежом в конце 1980-х годов и состоит в облучении контролируемой зоны

гамма-квантами высокой энергии. Позднее отечественными исследователями предложен односторонний доступ к объекту для обнаружения ВВ в грунте. Для идентификации ВВ используется регистрация продуктов распада короткоживущих изотопов бора ¹²В и азота ¹²N, рождающихся в результате фотоядерных реакций на азоте ¹⁴N и углероде ¹³С, составляющих основу большинства ВВ, при их облучении гамма квантами с энергией больше 31 МэВ.

Выбор этих ядерных реакций обеспечивает высокую селективность обнаружения ВВ, т.к. при облучении любых других химических элементов гамма квантами с энергией меньше 100 МэВ не образуются другие изотопы с периодом полураспада в диапазоне от 1 до 100 мс. В качестве источника высокоэнергетического гамма излучения может быть использовано тормозное излучение электронов, ускоренных в микротроне. По расчетам авторов [3], обнаружитель может обеспечить обнаружение ВВ массой не менее 40 г в грунте на глубине до 0,5 м за время 5-20 мс.

Методы ядерного квадрупольного резонанса (ЯКР) основаны на регистрации резонансного поглощения электромагнитной энергии ядрами атомов с электрическим квадрупольным моментом. Это могут быть ядра азота, хлора, натрия, калия. Частоты поглощения, в зависимости от типа ЯКР лежат, в основном, в интервале 0,5-7 МГц и зависят от величины спина ядра, величины и формы градиента электрического поля в месте расположения ядра. По спектру ЯКР ядер атомов можно определить тип ВВ.

Отечественные работы по методам ЯКР для обнаружения ВВ начались в середине 1970-х гг. в Калининградском госуниверситете и в Новосибирском Академгородке. В конце 1980-х гг. отечественными учеными впервые была успешно продемонстрирована возможность обнаружения методом ЯКР противотанковых мин ТS-2.5, TS-6 и ТМ-2П. Для прямого ЯКР было определено, что при размещении объекта между передатчиком и приемником минимально обнаруживаемая масса гексогена и октогена составляет 10 г, время обнаружения 10 с и масса обнаружителя может быть около 70 кг.

Для чувствительного детектирования сигналов ЯКР азота в составе NO₂-групп молекул BB отечественными учеными парал-

лельно с зарубежными разработан метод кросс-релаксационного ЯКР, который обеспечивает возможность обнаружения и идентификации гексогена, ТЭН и ТНТ с массой 10 г за 10 с [4].

Период с 2000 г. характерен интенсивными отечественными разработками различных технических решений ЯКР обнаружителей. Предложена быстродействующая система прямого ЯКР для дистанционного обнаружения 10 г гексогена и октогена на глубине 45 см в грунте и в багаже толщиной 45 см на ленте, движущейся со скоростью 20 см/с [5]. Время реакции системы — несколько секунд.

Методы лазерной спектроскопии являются перспективными дистанционными методами обнаружения следов ВВ. В России это направление сейчас интенсивно исследуется. Прорабатываются схемы спектроскопии для обнаружения как непосредственно молекул ВВ, так и продуктов их разложения в естественных условиях или с инициацией лазерным излучением. Продукты разложения таких ВВ, как тротил, гексоген, могут содержать NO, NO₂, N₂O, CO, CO₂, a BB аммиачноселитренной группы - NH₃, причем концентрации продуктов разложения по оценке ряда авторов могут значительно превышать концентрации паров самих ВВ в исследуемом объеме.

Рассматриваются различные эффекты: поглощение с использованием диодной лазерной спектроскопии (ДЛС), поглощение с генерацией акустического излучения; люминесценцию, в том числе лазерно-индуцированную флуоресценцию (ЛИФ) и комбинационное рассеяние (КР).

Коллективом авторов ИОА СО РАН, ИЛФ СО РАН и Сибирского филиала НПО «СТиС» МВД РФ на лабораторной установке была показана возможность обнаружения насыщенных паров ТНТ методом оптико-акустической спектроскопии с расстояния в несколько метров [6]. По оценке зарубежных исследователей, использование резонансного комбинационного рассеяния (РКР) дает возможность создания портативного неконтактного обнаружителя [7] с порогом обнаружения ТНТ 2 нг в контролируемом объеме и временем регистрации РКР спектров на длине волны 785 нм, равным 20 с.

Получены обнадеживающие экспериментальные результаты по лазерно-индуци-

рованной флуоресценции [8]: порог обнаружения паров ТНТ на уровне 10 ррt при времени обнаружения несколько десятков секунд с расстояния 5 м.

Литература

- 1. Грузнов В.М., Балдин М.Н., Макась А.Л., Титов Б.Г. // Журнал аналитической химии. 2011. Т. 66. № 11. С. 1-11.
- 2. Makas A.L., Troshkov M.L., Kudryavtsev A.S., Lunin V.M. // J. Chrom. B. 2004. Vol.800. P. 63.
- 3. Белоусов А.С., Илющенко Р.Р., Карев А.И. и др. // Патент РФ № 2185614/ Заявка: 2000131575/06 jn 18.12.2000, Опубликовано: 20.07.2002/
- 4. Гречишкин В.С., Синявский Н.Я. // УФН. 1997. Т. 167. № 4. С. 413 .

- 5. Гречишкин В.С., Гречишкина Р.В., Емельянов О.С. // Патент РФ № 2165104. Заявка: 98103672/09 98103672/09 от 02.03.1998. Опубликовано: 10.04.2001.
- 6. Аксёнов В.А., Кихтенко А.В., Грузнов В.М., Балдин М.Н., Буряков И.А. // Материалы 4-го специализированного форума «Современные системы безопасности Антитерроризм»,. Красноярск, 2008. С. 47.
- 7. Moore D.S., Scharff R.J. // Analyt. and Bioanalyt. Chem. 2009. Vol. 393. No. 6-7. P. 1618.
- 8. Лосев В.Ф., Бобровников С.М., Ворожцов А.Б., Чернов Е.В., Максимов Е.М., Панченко Ю.Н., Резнев А.А., Сакович Г.В., Цаплев Ю.Б. // Патент РФ на полезную модель № 75242. Опубликовано 27.07.2008. Бюл. № 21.

METHODS OF DIRECT DETECTION OF EXPLOSIVES

V.M. Gruznov

A.A. Trofimuk Institute of oil and gas geology and Geophysics SD RAS

Abstract

In work give brief description the modern methods of detection of explosives. Exposure data direct methods detection: gas analysis; using neutron irradiation; gamma-activation analysis; at based nuclear quadrupole resonance and optical spectroscopy.

ЖАРЫЛҒЫШ ЗАТТАРДЫ ЗЕРТТЕУГЕ АРНАЛҒАН ӘДІСТЕРІ

В.М. Грузнов

А.А. Трофимук атындағы мұнай-газ геология және геофизика институты РАН

Аннотация

Бұл жұмыста жарылғыш заттарды зерттеуге арналған әдістердің қысқаша сипаттамасы берілген. Тікелей анықтау әдістері көрсетілген: газ талдау; нейтронды сәулелену, гамма белсендіру талдау; ядролық квадрупольного-резонанстық және оптикалық спектроскопия негізделген.