УДК 662.216.5:546.26

ИССЛЕДОВАНИЕ ВЛИЯНИЯ КАРБОНИЗИРОВАННОЙ РИСОВОЙ ШЕЛУХИ НА СКОРОСТЬ ГОРЕНИЯ НИТРАТА ГИДРОКСИЛАММОНИЯ

^{1,2} Атаманов М.К.*, ³Томиоши Шотаро, ³Итояма Нобору, ³Рашид Амроуз, ³Кейти Хори, ^{1,2}Керимкулова А.Р., ^{1,2}Мансуров З.А.

¹Казахский национальный университет им. аль-Фараби, г. Алматы, Казахстан. ²Институт проблем горения, г. Алматы, Казахстан. ³Японское агентство аэрокосмических исследовании, Сагамихара, Япония *e-mail: mk.atamanov@gmail.com

Аннотация

В данной работе представлены исследования влияния карбонизированной рисовой шелухи с высокой удельной поверхностью $1000\text{-}2000~\text{m}^2/\text{r}$ на процесс горения 95% водного раствора нитрата гидроксиламмония (Hydroxyl Ammonium Nitrate, HAN, NH2OH*HNO3). Данная композиция рассматривается в качестве заменителя гидразина в газогенераторных системах ракетных двигатели. Исследования проводились в камере высокого давления при 1, 3 и 5 МПа в среде азота. В статье приведены результаты влияния высоких давлении на скорость горения составов карбонизированной рисовой шелухи и нитрата гидроксиламмония с помощью высокоскоростной камеры по методу Breaking Point.

Ключевые слова: карбонизированная рисовая шелуха, нитрат гидроксиламмония, скорость горения, камера высокого давления, высокоскоростная видеосъемка.

Введение

В аэрокосмической промышленности в качестве жидких ракетных топлив используются гидразин с катализатором из иридия как монотопливо, в основном данный вид топлива применяется в элементах управления ориентацией спутников.

К сожалению, ракетные топлива на основе гидразина считаются чрезвычайно токсичными. Среди возможных заменителей гидразина, распространено применение энергетических ионных жидкостей, содержащих ионный окислитель, топливо и воду, которые могут в своей совокупности служить в качестве новых однокомпонентных топлив [1, 2].

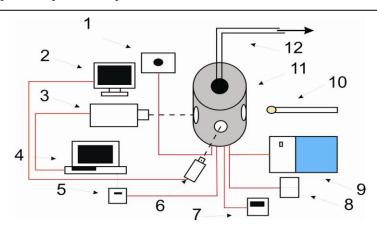
В конце XX века были предложены водно-энергетические соединений как: HAN (NH_3OHNO_3) , HNF $(N_2H_5C(NO_2)_3)$, ADN $(NH_4N(NO_2)_2)$ и т.д., которые смогли удовлетворить всем требованиям, предъяв-ляемым к ракетным топливам и их состав-ляющим.

В более общем смысле комбинации топлив для использования ракетных системах должны иметь восстановительный катион, который хорошо растворим и стабилен в водном растворе, кислородный баланс таких топлив веществ остается всегда положитель-ным.

В данной работе будет исследовано влияние карбонизированной рисовой шелухи (КРШ-475) на процесс горения водного раствора *НАN*, *NH*₂*OH***HNO*₃ 95 % в камере высокого давления и исследование кинетики разложония данной композиции. По результатам обзора литературы найдены очень мало работ, которые имеют дело с влиянием добавки углерода в топливо данного вида. Наше исследование касаются непосредственно термического и каталити-ческого разложения между вышеуказанными материалами. Будут представлены и обсуж-дены результаты влияния КРШ-475 на разложение и на физикохимические свойства *НАN*.

НАМ - это высокоэнергоемкое вещество которое имеет перспективу стать заменителем гидразина, вследствие это приобретает широкую популярность в области ракетных топлив [3]. Данное вещество менее токсичное, имеет высокую плотность и характеристики, превосходящие большинство используемых энергоемких материалов и рассматривается в качестве основного окислителя для гибридных ракет.

Основным прекурсором HAN-а является «гидроксиламин - H_2 NOH», продукт замещения группой OH одного атома водорода в молекуле аммиака NH_3 . Гидроксиламин и его соли применяются для введения оксимной группировки и гидроксамовых кислот, также для определения карбонильных соединений. Сульфаты применялись как вещество для проявления цветных фотопленок. Перхлорат гид-


роксила-мина широко используется в виде окислителя в твердых ракетных топливах как самостоя-тельно, так и в смеси с другими компонентами [4].

Существует несколько методов для синтеза гидроксиламина: гидрированием окси-да азота(II) в среде разбавленной серной кислоты при 40° С в присутствии катализатора (платина, нанесенная на графит) или восстановлением азотной кислоты водородом в среде разбавленной фосфорной кислоты H_3PO_4 в присутствии палладия.

Экспериментальная часть

Для проведения экспериментов по определению влияния карбонизированной рисовой

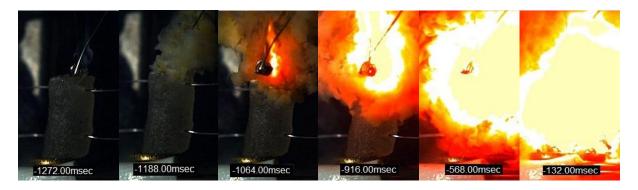
шелухой на процесс горения 95% водного раствора нитрата гидроксиламмония с с последующим определением скорости горения составов и влияния давления на них в работе применялась камера высокого давления (strand burner) совместно с высокоскоростной камерой PHOTRON с настройкою до 1000 кадров в секунду и разрешением в 640х488 пикселей. Данная аппаратура позволяет посматривать динамику горения образца в динамическом режиме от точки инициирования до момента полного сгорания. Для достижения высокого давления системы был использован газ азота из внешнего источника. Схема общей экспериментальной установки показана ниже на рисунке 1.

1 - воспламенитель; 2 - монитор; 3 - Запись камеры; 4 - PC; 5 - Термопара; 6 - Живая камера; 7 - осциллограф; 8 - источник давления; 9 - регулятор давления; 10 - источник света; 11 –Камера сгорания; 12 – Выход отработанных газов

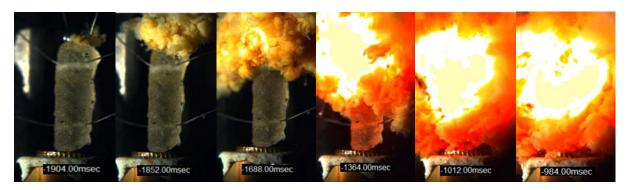
Рис 1. Схема экспериментальной установки камеры давления

Результаты и обсуждение

Экспериментальные исследования горения составов в камере высокого давления при различных давлениях.


В камеру высокого давление помещались спрессованные образцы массой 2г, высотой 1 см и диаметром 6 мм. В два конца образцов были встроены датчики для определения скорости горения по методу Break Point (точка разрыва) которые были подключены к осциллографу. Инициирование производится с помощью нагревательной спирали и связующего полимера GAP (полимер азида глицидила) после достижения нужного уровня давления.

На рисунке 2 представлены результаты влияния давления в 1 МПа,3 МПа и 5 МПа на составы гидроксиламония нитрата и карбоксиметил целлюлозы при соотношении реагентов 80% НАN/20% СМС где отображается динамика горения с отражением скорости сгорания образцов проведенных в камере высокого давления снятой со специализированной высокоскоростной камерой высокого разрешения.


Судя по кинограме можно предположить, что скорость горения образцов линейно растет от увеличения прилагаемого давления на систему. Образцы полностью сгорают в атмосфере азота не оставляя твердых продуктов горения, сопровождается с выделением тепла и газа.

(время горения 1424 тсек 1 МПа)

(время горения 1140 тсек 3 МПа)

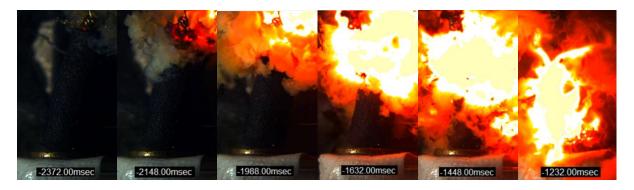
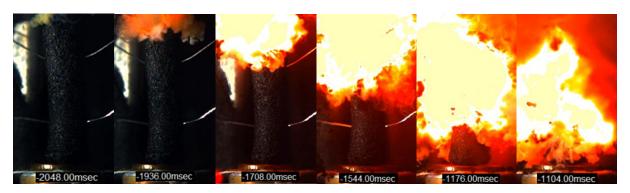
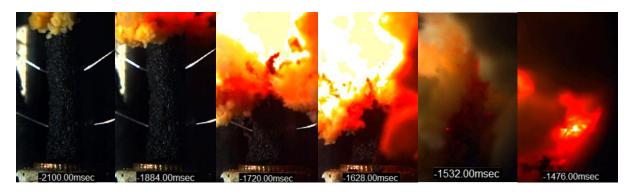

(время горения 1116 тсек 5 МПа)

Рис 2 – Кинограмма горения составов HAN 80% и Карбоксиметилцеллюлоза 20% при давлении 1 МПа,3 МПа и 5 МПа


На рисунке 3 представлены результаты влияния давления в 1 МПа,3 МПа и 5 МПа на составы гидроксиламония нитрата и карбоксиметил целлюлозы с добавлением карбонизированной рисовой шелухи КРШ-475 активированной К₂СО₃ при соотношении реагентов 80% HAN/15% CMC/ 5% КРШ-475. Полученные результат указывают на акселерацию скорости горения при внедрении углерода. Скорость горения оставляет 16 мм/сек в образцах при давлении 1 МПа и 22,5мм/сек при давлении в 5МПа.

По данным осциллографа можно сравнительно отметить о положительной акселерации скорости горения составов при давлениях системы от 1 до 5 МПа. Горение отличается обильным газообразованием, высокой температурой горения и отчетливо видным фронтом пламени которое имеет ламинарный характер.

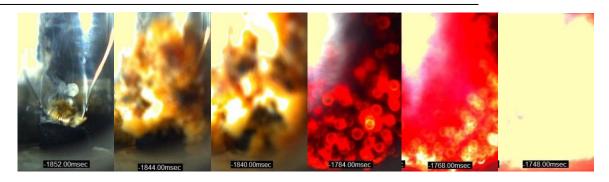

На рисунке 4 представлена динамика горения составов с концентрацией 10% КРШ-475 и 90% нитрата гидроксиламмония без добавления в состав СМС геля.

(время горения 1140 тсек 1 МПа)

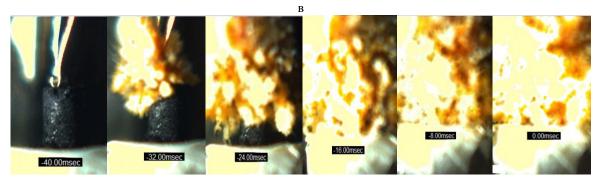
(время горения 994 тсек 3 МПа)

(время горения 624 тсек 5 МПа)

Рис 3. Кинограмма горения составов HAN 80%, Карбоксиметилцеллюлоза 15%, КРШ 5% при давлении 1 МПа,3 МПа и 5 МПа


По полуеных экспериментальным данным можно заметить высокую скорость горения составов сравни-тельно проведенных экспериментов выше. Также прослеживается закономерность, что скорость горение топлива во всех проведенных экспериментах сильно меняется в зависимости от содержания карбонизированной рисовой шелухи в составе. Судя по кинограмме можно предположить, что мы наблюдаем экспоненциальную реакциюю чему свидетель-ствует временя горения состава, где дис-кретизация составляет всего 8

тоск, которое характерно взрыву. При введении в состав карбонизированной рисовой шелухой просле-живается повышение температуры горения с $191\,^{\circ}$ C до $330\,^{\circ}$ C.


Можно отметить, что горение данной системы является стабильным и имеет ламинарное пламя, сопровождается выделением большого объема тепла и не образует твердых продуктов горения. Характеристики составов приведенных выше показывают хорошую перспективу применения данных комбинации в качестве ракетных топлив.

На рисунке 5 показано влияния давления на скорость горения образцов 80% HAN/15% CMC/ 5% КРШ-475 при давлении 1 МПа – 5

МПа в сравнении с экспериментальными данными, которые приведены в работе [1].

(время горения 104 тсек) при давлении 1 МПа

(время горения 40 тсек) при давлении 3 МПа

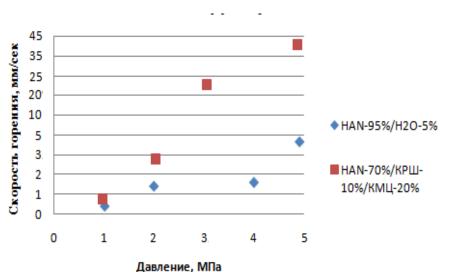


Рис 4. Кинограмма горения составов НАN 90 %, КРШ 10% при давлении 1 МПа и 3 МПа

Рис 5. Эффект карбонизированной рисовой шелухи (КРШ) на скорость горения HAN в зависимости от давления в камере горения

Заключение

Получены и обработаны экспериментальные результаты по влиянию карбо-

низированной рисовой шелухи (КРШ-475, K_2CO_3) на процесс горения 95% водного раствора нитрата гидроксиламмония при давлении от 1 МПа до 5 МПа в атмосфере азота. Ис-

следования по сжиганию образцов проведенные в камере высокого давления свидетельствуют об увеличении скорости горения нитрат гидроксиламмония от 4,5 мм/сек до 40,7 мм/сек и повышение температуры горения с 191 °C до 330 °C.

Литература

- 1. Rachid Amrousse, Toyoshiyuki Katsumi, Noboru Itouyama, Nobuyuki Azuma, Hideshi Kagawa, Keigo Hatai, Hirohide Ikeda, Keiichi Hori, New HAN based mixtures for reaction control system and low toxic spacecraft ppropoulsion subsystem: Termal decomposition and possible thruster applications // Combustion and flame 162 (2015) 2686-2692
- 2. Брикун И.К., Козловский М.Т., Никитина Л, В, Гидразин и гидроксиламин и их применение в аналитической химии, А.-Д.., 1967;
- 3. Харитонов Ю. Я., Сару Ханов М. А., Химия комплексов металлов с гидроксиламином, М., 1977. В. Я. Росоловскип.

- 4. L. Courthe'oux et al. / Applied Catalysis B: Environmental 62 (2006) 217–225
- 5. В.В. Барзыкин Термический анализ реагирующих веществ//Горение и Плазмохимия, 2004, том 2,№4,с.275-292
- 6. Атаманов М.К., Томиоши Ш., Итояма. Н Мансуров З.А. Процесс горения и термический анализ системы нитрата аммония и карбонизированной рисовой шелухи //Материалы VIII Международного Симпозиума «горение и плазмохимия» и научнотехнической конференции «энергоэффективность-2015», 16-18 сентября, 2015, Алматы, Казахстан, С. 243-245.
- 7. Атаманов М.К., Турсын С., Тулепов М., Мансуров З.А. Gas generators are based on carbonaceous materials//Материалы VIII Международного Симпозиума «горение и плазмохимия» и научно-технической конференции «энергоэффективность-2015», 16-18 сентября, 2015, Алматы, Казахстан, С. 239-242.

ГИДРОКСИЛАММОНИИ НИТРАТЫНЫҢ ЖАНУ ЖЫЛДАМДЫҒЫНА КӨМІРТЕКТІ КҮРІШ ҚАУЫЗЫНЫҢ ЫҚПАЛЫН ЗЕРТТЕУІ

 1,2 Атаманов М.К., 3 Томиоши Шотаро, 3 Итояма Нобору, 3 Рашид Амроуз, 3 Кейти Хори, 1,2 Керимкулова А.Р., 1,2 Мансуров З.А.

¹Әл-Фараби атындағы Қазақ ұлттық университеті. Алматы, Қазақстан.

²Жану проблемалары институты, Алматы, Қазақстан.

³Жапонияның Аэроғарыштық зерттеулер агенттігі, Сагамихара, Жапония

*e-mail: mk.atamanov@gmail.com

Аннотация

Бұл жұмыста $1000-2000 \text{ м}^2$ /г жоғары беттік ауданға ие көміртекті күріш қауызынын 95% гидроксиламмони нитратының (Hydroxyl Ammonium Nitrate, HAN, NH $_2$ OH*HNO $_3$) су ерітіндісінің жану әсерін зерттеуі ұсынылады. Бұл композиция гидразин жанармайын, зымыран қозғалтқыштарындағы газ өндіруші жүйелге арналған алмастырушысы ретінде саналады. Зерттеулер азот газы ортада 1,3 және 5 МПа қысым камерада жүргізілді. Жылдамдығы жоғары бейнекамерасымен қолданып Breaking Point әдісін пайдалана отырып, күріш қауызымен гидроксиламмонии нитраты жануына жоғары қысымды әсерін зерттеу нәтижелері көрсетілген.

Түйінді сөздер: көміртекті күріш қауызы, гидроксиламмонии нитраты, жану жылдамдығы, жоғары қысым, жоғары жылдамдықты бейнекамера.

STUDY OF THE INFLUENCE ON CARBONIZED RICE HUSK ON THE BURNING RATE OF HYDROXYLAMMONIUM NITRATE

^{1.2}Atamanov MK*, ³Noboru Itouyama, ³Tomiyoshi Shotaro, ³Rachid Amrousse, ³Keiichi Hori, ^{1,2}Kerimkulova A.R., ^{1,2}Mansurov Z.A.

¹Al-Farabi Kazakh National University, Almaty, Kazakhstan.

²Institute of Combustion Problems, Almaty, Kazakhstan.

³Japan Aerospace Exploration Agency, Sagamihara, Japan

*e-mail: mk.atamanov@gmail.com

Abstract

This paper presents the study of influence of carbonized rice husk with a high specific surface area of 1000-2000 m²/g in the combustion process 95% aqueous solution of hydroxylammonium nitrate (Hydroxyl Ammonium Nitrate, HAN, NH₂OH*HNO₃). This composition is considered as a substitute for hydrazine gas generating systems in rocket thruster. Studies were conducted in a pressure chamber at 1, 3 and 5 MPa in a nitrogen environment. The results of the effect of high pressure on the burning rate of carbonized rice husk and hydroxylammonium nitrate detecting by high speed camera by Breaking Point method.

Keywords: carbonized rice husk, hydroxylammonium nitrate, burning rate, pressure vessels, high-speed camera.