УДК 544.47-022.532:665.637-404

ВЛИЯНИЕ ПРИРОДЫ ВОССТАНОВИТЕЛЯ НА КАТАЛИТИЧЕСКУЮ АКТИВНОСТЬ ПОЛИОКСИДНЫХ КОНТАКТОВ В РЕАКЦИИ УГЛЕКИСЛОТНОЙ КОНВЕРСИИ МЕТАНА

А.В. Мироненко¹, Ж.Б. Кудьярова², А.Б. Казиева¹, З.А. Мансуров¹

 1 Институт проблем горения, Богенбай батыра 172, Алматы, Казахстан 2 Казахский национальный университет им. аль-Фараби, пр. аль-Фараби, 71, Алматы, Казахстан Email: anamir.48@mail.ru

Аннотация

Исследована каталитическая активность полиоксидных контактов, полученных методом "solution combustion" (SC) в процессе углекислотной конверсии метана (УКМ). Установлено, что при использовании различных восстановителей (глицин и карбамид) катализаторы, синтезированные данным методом проявляют разные активности. В случае, когда восстановителем являлся глицин, наибольшей каталитической активностью обладает катализатор, имеющего в своем составе MgO-2%; NiO-1.6%; CoO-1.6%. На этом катализаторе конверсия для метана составляет 92%, диоксида углерода – 97%, с выходом H_2 – 42% и CO – 52%. Показано, что проведение процесса УКМ при условиях MgO – 1.6%; NiO – 0.75%; CoO – 0.75%; Q – 8700 ч⁻¹ с использованием в качестве восстановителя карбамида, конверсия метана достигает 84.7%, а конверсия диоксида углерода 93,2%.

Ключевые слова: стеклоткань, катализ, нитраты металлов, глицин, карбамид, полиоксиды

Введение

В течение прошлого десятилетия существенное внимание привлекали исследования по синтезу материалов методом СВС [1-5]. Однако, высокие температуры, необходимые для инициирования процесса СВС затрудняют применения этого метода для получения сложных гетерогенных систем.

По сравнению с этим применение влажных методов, вследствие смешения исходных компонентов на молекулярном уровне, позволяет синтезировать гетерогенные системы при относительно низких температурах. Этот метод впервые был предложен Дж.Дж. Кингслеем и К.С. Патилом в 1988 году [6]. В процессе горения происходит экзотермическая реакция между окислителем (в основном нитраты) и органическим топливом, например, мочевина, глицин или карбогидразид.

В этом методе происходит предварительное смешение окислителя и восстановителя в водной среде и, после обезвоживания, при относительно невысокой температуре (300-600 °C), практически мгновенно начинается прохождение реакции с нагревом системы до температур 1000-2000 °C.

В настоящей работе проведено сравнение каталитической активности стекло-тканых катализаторов в процессе углекислотной конверсии метана, синтезированных методом "solution combustion" с применением разных по природе восстановителей — глицина и карбамида.

Методика эксперимента

Образцы катализаторов готовились на основе стеклоткани, марки КТ-11-ТО. Активные компоненты катализатора (Mg, Ni, Co) наносились на поверхность стеклотканей матрицы методом "solution combustion" [7-9].

Исследование каталитической активности образцов проводилось в проточной, изготовленной из кварцевого стекла каталитической установке, с обогреваемым трубчатой печью [9] реактором.

Активность катализаторов проверялась on-line с использованием газохроматографического метода анализа на приборе «XPOMOC ГХ-1000», оснащенного программным обеспечением (ПО) с записью данных на компьютер.

Скорость исходной газовой смеси составляла $60 \text{ см}^3/\text{мин}$ (для $CO_2 - 30 \text{ см}^3/\text{мин}$, для метана $-30 \text{ см}^3/\text{мин}$). Подача исходных компо-

нентов (CH_4 и CO_2) происходила с применением предварительно калиброванных манометров и измерителей газовых потоков ИРГ-3.

Так как в процессе каталитической реакции за счет роста количества частиц наблюдалось возрастание скорости потока на выходе реактора, его регистрировали с помощью прибора «Метка», также имеющего ПО с выходом на компьютер.

Результаты и обсуждения

Исследована каталитическая активность образцов катализаторов с варьированием со-

держания оксидов никеля и кобальта при содержании оксида магния равном 2%.

В качестве восстановителя был использован глицин. Получены экспериментальные данные по влиянию состава MgO – 2%, NiO – X%; CoO – Y% катализатора на конверсию и выходы продуктов реакции в зависимости от температуры процесса УКМ (рис. 1 и 2).

Из рисунков следует, что наибольшая конверсия и лучшие выходы продуктов реакции (H_2 и CO) наблюдаются для катализатора под номером 3, в котором X и Y=1,6 %.

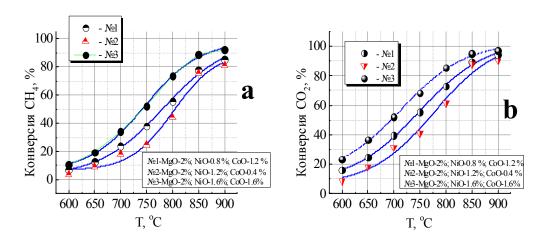


Рис. 1. Влияние температуры процесса УКМ и состава MgO-2%, NiO-X%; CoO-Y% катализатора на конверсию исходных компонентов.

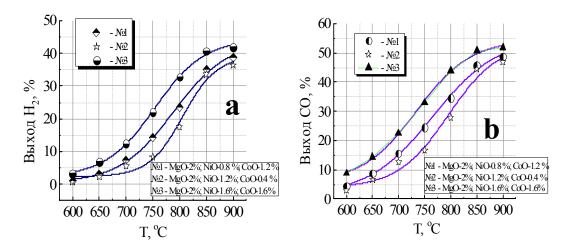


Рис. 2. Влияние температуры процесса УКМ и состава MgO - 2%, NiO - X%; CoO - Y% катализатора на выходы продуктов реакции.

В таблице 1 представлены данные для области температур 800-900 °C и соотношения H_2O/CO , H_2/CO , $[H_2+CO]/[CO_2+H_2O]$, показы-

вающие, наряду с температурными зависимостями, основные характеристики процесса.

Анализ табличных данных показывает, исходя из соотношений H_2O/CO и $[H_2+CO]/[CO_2+H_2O]$, что наиболее полное превращение метана и диоксида углерода в продукты реакции происходит на катализаторе №3 (MgO-2%; NiO-1.6%; CoO-1.6%) при температурах 850-900 °C: $H_2O/CO = 0,092$ и 0,072, а $[H_2+CO]/[CO_2+H_2O] - 12,226$ и 16,494, соот-

ветственно. На этом катализаторе конверсия для метана составляет 89-92%, диоксида углерода – 95-97%, с выходом H_2 – 41-42% и CO – 51-52%.

Проведены также эксперименты по исследованию каталитической активности в системе, включающей в себя MgO-NiO-CoO, по температуре.

Таблица 1. Влияние состава полиоксидных катализаторов на соотношения компонентов (восстановитель - глицин)

T, °C	Соотношение компонентов											
	H ₂ O/CO	H ₂ /CO	[H ₂ +CO]/[CO ₂ +H ₂ O]									
№1 MgO – 2%; NiO – 0.8%; CoO – 1.2%												
800	0,558	0,680	1,902									
850	0,218	0,770	5,186									
900	0,145	0,795	8,118									
№2 MgO – 2%; NiO – 1.2%; CoO – 0.4%												
800	0,789	0,627	1,255									
850	0,239	0,754	4,633									
900	0,186	0,777	6,166									
№3 MgO – 2%; NiO – 1.6%; CoO – 1.6%												
800	0,280	0,749	4,047									
850	0,092	0,803	12,226									
900	0,072	0,810	16,494									

В качестве восстановителя был использован карбамид. Оксид магния варьировался от 0,5 до 3% (0,5; 1,0; 2,0 и 3%), содержание оксида никеля и оксида кобальта изменялись от 0 до 1,5% (0; 0,5; 1,0 и 1,5%).

Полученные экспериментальные данные по влиянию состава полиоксидных катализаторов на конверсию, выходы продуктов реакции и соотношений компонентов приведены в таблице 2.

Как видно из табличных данных, при температуре каталитического процесса, равной 850 °C наибольшую активность проявляет катализатор, имеющий в своем составе 1% MgO и 1% NiO (эксперимент №8, таблица 2), при этом конверсия метана составляет 92%, а диоксида углерода -97%.

Выходы целевых продуктов реакции достигают 42% для водорода и 49% для монооксида углерода соответственно. Анализ полученных данных свидетельствует о том, что полиоксидные (MgO-NiO-CoO) каталитические системы на основе стеклоткани в зависимости от изменения восстановителя (глицин, карбамид) имеют достаточно близкую каталитическую активность в УКМ.

На рисунке 3 представлены зависимости конверсии (а) и выходов синтез газа от темпе-

ратуры реактора. Видно, что при указанных условиях проведения процесса УКМ (рисунок 1a) конверсия метана достигает 84.7%, а конверсия диоксида углерода 93,2%.

В этих же условиях выходы водорода и монооксида углерода составляют — 37.5 и 48.8%, соответственно.

На рисунках 3 и 4 показаны зависимости конверсии (a) и выходов синтез газа (b) от содержания оксида никеля и кобальта.

Из рисунка 4а и b видно, что с увеличением концентрации никеля в образце, конверсия исходных компонентов (CH_4 и CO_2), а также выходы продуктов реакции (H_2 и CO) увеличивается.

Конверсия метана и диоксида углерода составляют 65 и 75% соответственно. При указанных условиях выходы водорода и монооксида углерода достигают 28 и 38% соответственно.

Из рисунка 5а видно, что при содержании оксида кобальта, равного 1,5% наблюдаются максимальные значения конверсии метана (58%) и диоксида углерода (68%), при этом выходы целевых продуктов достигают 25% для водорода и 33% для монооксида углерода.

- 10											
$N_{\underline{0}}$	Содера	кание акти	ІВНЫХ	Τ,	Q, ч ⁻¹	Конвер	сия, %	Выход, %		Соотношение	
	компонентов			°C						компонентов	
	MgO, %	NiO, %	CoO, %			CH ₄	CO_2	H_2	CO	H ₂ O/CO	H ₂ /CO
1	0.5	0	0	600	12000	11.266	7.352	0.100	0.200	0.000	0.000
2	0.5	0.5	1	850	10000	89.879	96.133	38.435	45.993	0.324	0.834
3	0.5	1	1.5	700	8000	36.675	43.087	13.090	21.259	1.438	0.616
4	0.5	1.5	0.5	770	4800	78.362	87.612	32.949	41.476	0.532	0.794
5	1	0.5	0.5	700	12000	49.077	57.330	17.228	26.536	1.088	0.649
6	1	0	1.5	770	10000	84.019	91.501	35.908	44.378	0.467	0.809
7	1	1.5	1	600	8000	38.904	39.272	10.804	17.971	1.607	0.601
8	1	1	0	850	4800	91.580	97.338	41.669	48.963	0.313	0.851
9	2	1	1	770	12000	76.841	90.610	34.781	43.068	0.408	0.808
10	2	1.5	0	700	10000	55.747	75.569	23.672	38.940	0.668	0.615
11	2	0	0.5	850	8000	71.039	82.918	26.178	35.959	0.764	0.728
12	2	0.5	1.5	600	4800	23.851	40.114	8.059	15.327	1.970	0.526
13	3	1.5	1.5	850	12000	86.371	96.516	43.634	52.385	0.332	0.833
14	3	1	0.5	600	10000	34.855	42.268	12.227	20.050	1.510	0.609
15	3	0.5	0	770	8000	56.862	69.500	23.406	31.773	0.860	0.737
16	3	0	1	700	4800	30.553	35.752	9.729	20.401	1.377	0.475

Таблица 2. Влияние состава полиоксидных катализаторов на конверсию, выходы продуктов реакции и соотношения компонентов (восстановитель - карбамид)

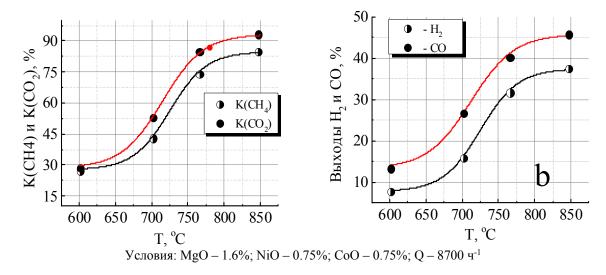
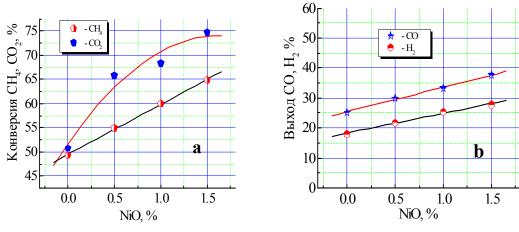
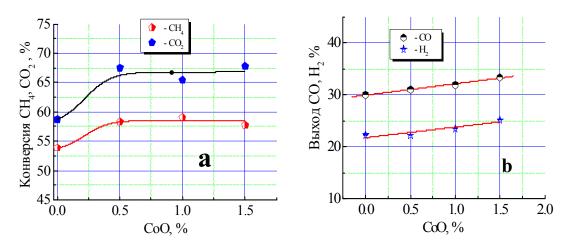


Рис. 3. Зависимости конверсии (а) и выходов синтез газа (b) от температуры процесса УКМ.


Расчет материального баланса показал, что закоксовывание поверхности катализатора для образца, при приготовлении которого применялся глицин ниже, чем для образца синтезированного с карбамидом и составляет для первого около 0,5±0,5%, а для второго - $3\pm0.5\%$.

Выводы

Синтезированы полиоксидные каталитические системы на основе стеклоткани методом "solution combustion" (SC).


Установлено, что при использовании различных восстановителей (глицин и карбамид) катализаторы проявляют разные активности в процессе углекислотной конверсии метана.

В случае, когда восстановителем являлся глицин, наибольшей каталитической активностью обладает катализатор, имеющий в своем составе MgO-2%; NiO-1.6%; CoO-1.6%. На этом катализаторе конверсия для метана составляет 92%, диоксида углерода – 97%, с выходом $H_2 - 42\%$ и CO - 52%.

Условия: MgO -1.6%; NiO -0.75%; T -730 °C; Q -8700 ч⁻¹

Рис. 4. Зависимости конверсии (а) и выходов синтез газа (b) от содержания оксида никеля в образце катализатора.

Условия: MgO -1.6%; NiO -0.75%; T -730 °C; Q -8700 ч⁻¹

Рис. 5. Зависимости конверсии (а) и выходов синтез газа (b) от содержания оксида кобальта в образце катализатора.

Показано, что проведение процесса УКМ при условиях MgO-1.6%; NiO-0.75%; CoO-0.75%; Q-8700 ч⁻¹ с использованием в качестве восстановителя карбамида, конверсия метана достигает 84.7%, а конверсия диоксида углерода 93,2%.

Литература

- 1. Юхвид В.И. Высокотемпературные жидкофазные СВС-процессы: новые направления и задачи // Цветная металлургия. Известия вузов, 2004, №5.
- 2. Юхвид В.И. Жидкофазные СВС-процессы и литые материалы // «Наука производству», 2006, №2.
- 3. Мержанов А.Г., Боровинская И.П. СВС-процессы в металлургии. // «Наука отрасли», 2003.

- 4. Курина Л.Н, Аркатова Л.А., Галактионова Л.В. Каталитическая переработка природного газа для получения ценных продуктов органического синтеза // http://www.chemistry.narod.ru/
- 5. Мироненко А.В. Влияние структуры фаз СВС-катализатора на образование продуктов парциального окисления метана // Материалы международного симпозиума. Под ред. Мансурова З.А. Алматы: Фонд «ХХІ век», 2001. 270 с.
- 6. Zhen-Lin Liio, Bin Geng, Jun Bao and Chen Gao. Parallel Solution Combustion Synthesis for Combinatorial Materials Studies // J. Comb. Chem. 2005, 7. p. 942-946
- 7. Z.R. Ismagilov, Z.A. Mansurov, N.V. Shikina, S.A. Yashnik, G.B. Aldashukurova, A.V. Mironenko, V.V. Kuznetsov, I.Z. Ismagilov, Na-

- nosized Co-Ni/glass fiber catalysts prepared by "solution-combustion" method, Nanoscience and Nanotechnology 2013, V. №3, №1, p. 1-9
- 8. Алдашукурова Г.Б., Мироненко А.В., Кудьярова Ж.Б., Мансуров З.А., Шишкина Н.В., Яшник С.А., Исмагилов З.Р. Приготовление и исследование стеклотканных катализаторов в процессе переработки метана в синтез
- газ // Горение и Плазмохимия. Т. 11. №2. 2013. С. 140-150.
- 9. Мироненко А.В., Казиева А.Б., Кудьярова Ж.Б., Мансуров З.А. Катализаторы на основе стеклоткани в процессе углекислотной конверсии метана // Материалы VIII Международного симпозиума «Физика и химия углеродных материалов/Наноинженерия». Алматы. 2014. С. 241-246.

INFLUENCE NATURE OF THE REDUCTANT ON CATALYTIC ACTIVITY POLYOXIDE CONTACTS IN CARBON DIOXIDE CONVERSION OF METHANE REACTION

A.V. Mironenko, Zh.B. Kudyarova, A.B. Kazieva, Z.A. Mansurov

Institute of Combustion Problems, Bogenbai batyr st. 172, Almaty, Kazakhstan Al-Farabi Kazakh National University, 71, Al-Farabi ave., Almaty, Kazakhstan

Abstract

The catalytic activity polyoxide contacts obtained by the "solution combustion" (SC) in carbon dioxide reforming of methane (CDCM). It is found that by using various reducing agents (glycine and urea) catalysts are synthesized by this method exhibit different activity. In the case where the reducing agent is glycine, it has the highest catalytic activity, the catalyst having in its composition MgO -2%; NiO -1.6%; CoO -1.6%. In this catalyst for the conversion of methane is 92% carbon dioxide -97% yield N₂ -42% CO -52%. It is shown that the conduct of the process under the conditions of CDCM MgO -1.6%; NiO -0.75%; CoO -0.75%; Q -8700 h⁻¹ using urea as a reducing agent, methane conversion reaches 84.7% and carbon dioxide conversion of 93.2%.

Keywords: fiberglass, catalysis, CDCM, metal nitrates, glycine, urea, polyoxides.

ПОЛИОКСИДТІ КАТАЛИЗАТОРЛАРДЫҢ КАТАЛИТИКАЛЫҚ БЕЛСЕНДІЛІГІН ТОТЫҚСЫЗДАНДЫРҒЫШТЫҢ ТАБИҒАТЫНАН ТӘУЕЛДІ САЛЫСТЫРМАЛЫ ТАЛДАУ

А.В. Мироненко, Ж.Б. Кудьярова, А.Б. Казиева, З.А. Мансуров

Жану проблемалары институты, Бөгенбай батыр 172, Алматы, Қазақстан Әл-Фараби атындағы Қазақ Ұлттық университеті, әл-Фараби даңғылы, 71, Алматы, Қазақстан

Аннотация

"Solution combustion" (SC) әдісімен алынған полиоксидті контактілердің каталитикалық белсенділігі көмірқышқылды конверсиясы процесінде (MKK) зерттелді. Әртүрлі метаннын тотықсыздандырғыштар пайдалану барысында (глицин және карбамид) аталған әдіспен синтезделген катализаторлардың каталитикалық белсенділігі әртүрлі болатындығы анықталды. Тотықсыздандырғыш ретінде глицинді қолданғанда, құрамы MgO – 2%; NiO – 1.6%; CoO – 1.6% болатын катализатордың каталитикалық белсенділігі жоғары екендігі айқындалды. Осы катализаторда метанның конверсиясы – 92%, көміртегі қостотығының конверсиясы 97 %-ды құрады, ал мақсатты өнімдер шығымы: H₂ – 42% және CO – 52%. МКК процесін тотықсыздандырғыш ретінде карбамидті пайдаланып, MgO – 1.6%; NiO – 0.75%; CoO – 0.75%; O – 8700 сағ⁻¹ жағдайында жүргізгенде метанның конверсиясы 84.7%, ал көміртегі қостотығының конверсиясы 93,2%-ға жетті. Тірек сөздер: шыны мата, катализ, МКК, метал нитраттары, глицин, карбамид, полиоксидтер.