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Abstract 
A class of nonlinear problems of liquid dielectric heating in the regime of natural convection near a verti-
cal surface under the conditions of non-stationary radiation-convective heat transfer at microwave influ-
ence with a small depth of penetration is studied. These problems are solved using highly effective as-
ymptotic procedures at the successive stages of non-stationary and stationary radiation-convective heat 
transfer. The non-stationary and stationary parts of solutions are joined by the “vertical coordinate-time” 
characteristic. The solutions, derived on these principles, are in good agreement with the exact limiting 
solutions. The error is within the limits of 7%. With a distance from the lower edge of the vertical surface, 
convective heat transfer changes from the values characteristic of the boundary condition of the second 
kind to the values characteristic of the boundary condition of the first kind. The rate of this transition de-
pends significantly on the complex parameter of microwave and thermal radiation. An important ad-
vantage of solutions to this class of external problems is the fact that even before complex calculations it 
is possible to perform an exhaustive analysis of the features of the studied processes. Moreover, despite a 
number of initial simplifications, the latter do not significantly affect the accuracy of results, guaranteeing 
reliable quantitative information. The developed method can be also extended to the regimes of natural 
convection with linear dependence of physical properties on temperature, using the Dorodnitsyn trans-
formation. To confirm the adequacy of the constructed mathematical model, an experimental study of sta-
tionary radiation-convective heat transfer carried out. Comparison of theoretical and experimental data 
shows that they are in a good agreement. This again confirms the effectiveness of the developed method 
for constructing theoretical solutions to the nonlinear problems of natural convection using the asymptotic 
procedures. 
Keywords: dielectric heating, nonstationary heat transfer, convection 

 
Introduction 
 

The historically new type of heating with 
the help of microwave energy has attracted an in-
creasing number of researchers, technologists, 
designers and other specialists in expanding the 
scope of this non-standard heat source in various 
processes and technologies. First of all, such 
unique properties of microwave radiation as iner-
tia-free character, concentrating huge power in the 
right place during a given time period, long-
distance transmission in the absence of a heat-
carrying medium, almost total conversion of mi-
crowave energy into heat, etc. are relevant now [2, 
14].  

Examples of successful application of mi-
crowave radiation are as follows: heat treatment 
of materials for various purposes; microwave dry-
ing of agricultural products; enrichment of ores by 
microwave exposure; microwave pyrolysis and  

 
 

gasification of coal fuel; microwave dispersion of 
solid materials, etc. In a number of chemical tech-
nologies, the use of microwave radiation acceler-
ates the rate of chemical reactions by tens and 
hundreds of times. 

The problems of dielectric heating of vari-
ous moving media remain topical at the present 
stage. Especially they are in demand in the pres-
ence of such complicating factors as non-
stationarity, complex radiation-convective heat 
transfer, non-linear heat transfer by heat radiation 
to the environment, etc. 

This paper is devoted to a theoretical study 
of the problem of microwave heating in the case 
of natural convective motion of liquid near a ver-
tical surface under the conditions of nonstationary 
radiation-convective heat transfer. 
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Problem statement 
 

In this case, the free-convective motion of 
liquid is caused by heterogeneous heating near a 
vertical surface and it is determined by the coeffi-

cient of volume expansion
p

Т dT

d







−= ρ
ρ

β 1
. The 

boundary-layer model proved to be very fruitful 
for mathematical description of such transport 
processes [14]. According to Yang's studies [5], 
using the perturbation method [17], consideration 
of the higher-order terms is justified only near the 
leading edge of the plate at very low temperature 
gradients, that is, near the boundary of boundary 
layer initiation. In a laminar flow, the effect vis-
cous dissipation and external pressure gradient is 
usually insignificant. Due to small temperature 
differences, variability of the thermophysical 
properties of liquid can be neglected. 

Natural convection of liquid occurs near the 
vertical surface of a plate with low thermal re-
sistance, heated by absorption of microwave radi-
ation by the near-surface zone due to the small 

penetration depth. The surface heat flux density qw 
applied to liquid is expressed as follows 

      
                    qw = AS,              (1) 
 

where S is flux density of microwave radiation, 
W/m2; 
            A is absorption coefficient of microwave 
radiation.  

This source of heat energy qw is dissipated 
in liquid by temperature Те under the action of 
convection mechanism and heat radiation into the 
environment. Below we consider two modifica-
tions of the studied system (Figs. 1 and 2). In the 
first case, thermal radiation passes through dia-
thermic washing liquid (Fig. 1). In the second 
case, heat transfer from the system filled with 
dropping liquid to the environment occurs through 
a vacuum interlayer (Fig. 2). As a result, the goal 
is to identify the regularities of the influence of 
microwave and thermal radiation, nonstationarity, 
vertical coordinate, etc. on convective heat trans-
fer. 

 
 

 
 

Fig. 1. Microwave heating at natural convection on the heat-radiating surface in a diathermic medium 
(Hydrodynamic boundary layer, microwave radiation, thermal boundary layer, 

 thermal radiation, ambient medium, diathermic medium) 
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Fig. 2. Microwave heating of liquid, which does not transmit thermal radiation, at natural convection 
(ambient medium, thermal radiation,vacuum, microwave radiation,  

hydrodynamic boundary layer, liquid not transmitting thermal radiation, thermal boundary layer) 
 

The stated problem in approximation of 
the boundary layer is reduced to solution of the 

following initial-boundary problem in the form of 
differential laws of conservation of: 

 
mass 

                           0=
∂
∂+

∂
∂

y

v

x

u
,                     (2) 

momentum 
2

2
( )Т

DU u u u u
u v g T T

dt t x y y
υ β ∞

∂ ∂ ∂ ∂≡ + + = + −
∂ ∂ ∂ ∂

,                 (3) 

and energy  

         
2

2

DT T T T T
u a

dt t x y y
υ∂ ∂ ∂ ∂≡ + + =

∂ ∂ ∂ ∂
,                   (4) 

 
The solution to system (2)–(4) should meet the following initial and boundary conditions  
for y = 0 
                          u = v = 0,         (5) 
                         

                                                                      wy

u τµ =
∂
∂

,         (6) 

      

                                                ( ) кeww qTTq
y

T ≡−−=
∂
∂− 44

0εδλ ,           (7) 

for y = δ 

                      u = 0,         (8) 
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                                                                        0=
∂
∂
y

u
,         (9) 

       
                                                                        T = T∞,        (10) 

 

                                 0=
∂
∂

y

T
,                   (11) 

     
                                                                  t  ≤ 0     T = T∞,                  (12) 
     
                                                                 x  ≤ 0     T = T∞,      (13) 

              
                               u  = v = 0                   (14) 
 

Here, x , y are longitudinal and transverse 
coordinates, m; t is time, s; u, v are longitudinal 
and transverse velocity components, m/s;  Т, Т∞, 
Тw, Тe are current, outer, surface and environment 
temperatures, К; qw, qc are surface and convective 
heat flux densities, W/m2; τw is shear stress on the 
wall, n/m2; δ is boundary layer thickness, m; g is 
acceleration of gravity, m/s2; βт is coefficient of 
volumetric expansion. 

Now it is impossible to find an exact ana-
lytical solution to equations (3) and (7) because of 
their nonlinear character. The only way is to con-
struct the approximate solutions to system (2)–
(14) with a controlled error. The common ap-
proach is consideration of transfer process at three 
successive stages [10] 

 
non-stationary 

 

                   
tDt

D

∂
∂≡ ,            (15) 

transient 

         
tx

u
tdt

D

∂
∂+

∂
∂+

∂
∂≡ ν ,           (16) 

and steady  
       

tx
u

dt

D

∂
∂+

∂
∂≡ ν            (17) 

 
At the first stage, the basic transport 

mechanism is molecular. Such an approximate 
description of the initial stage of non-stationary 
radiation-convective heat transfer is used some-
how for all approximate analytical solutions [10], 
and it corresponds to the development of a real 
process with acceptable accuracy. The transition 
stage, due to its short duration and complexity, 

usually “contracts to the point”. This method is 
widely used in convective heat transfer. At the 
third stage, the molar transport mechanism plays 
the main role. This regime will replace the previ-
ous one, when perturbations from the bottom edge 
of the plate reach the considered point. For steady 
radiation-convective heat transfer, non-stationary 
transfer becomes less pronounced as compared 
with the convective one. Even in the case of a rel-
atively rapid change in the wall temperature, one 
can successfully apply the assumption of the sta-
tionary character of radiation-convective heat 
transfer immediately after passing through the 
non-stationary stage of the process [7]. The gen-
eral solution is found after the “joining” the non-
stationary and stationary stage along the charac-
teristic passing in the “longitudinal coordinate-
time” plane. 

Then, it is assumed that the thicknesses of 
hydrodynamic and thermal boundary layers are 
also equal. This is possible, since thermal stratifi-
cation and initiated lift are localized within the 
temperature boundary layer δ. The thermal-
convective flow caused by this force should ex-
tend beyond the limits of the thermal boundary 
layer because of viscosity. However, according to 
the data of [6], illustrating the thermal and veloci-
ty fields, this effect is evident only for very vis-
cous liquids (Pr >> 1). Thus, for most cases, prop-
agation of the flow field beyond the thermal 
boundary layer is unimportant. 

In view of these two circumstances, and in 
connection with the presence of nonlinearities, 
initial-boundary problem (2) - (14) will be solved 
by an approximate method based on the apparatus 
of effective asymptotic expansions [13]. First, 
such solutions are very common because of their 
compactness. Secondly, to increase the accuracy, 
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we can attract the subsequent terms of asymptotic 
expansion. 

 
1. Non-stationary stage of heat transfer 
 

The problem statement for the non-
stationary stage of heat transfer in dimensionless 
variables takes form 

 

                 
2

2

YFo ∂
Θ∂=

∂
Θ∂

            (18) 

 
               Fo = 0    Θ = 1           (19) 
 

   Y = 0    кeww KiSkKi
Y

≡Θ−Θ−=
∂
Θ∂

)( 44     (20) 

 

             Y = ∆т      0=
∂
Θ∂
Y

           (21) 

 

where 
l

y
Y =  is dimensionless transverse coordi-

nate;  

            
∞

=Θ
T

T
, 

∞

=Θ
T

Tw
w , 

∞

=Θ
T

Te
e  are dimen-

sionless current, surface and environment temper-
atures;  

           
2x

at
Fo=  is local Fourier number;  

            
l

δ=∆  is dimensionless thickness of 

boundary layer;  

             
∞

=
T

хq
Ki к

к λ
 is local convective Kirpichev 

number; 

             
∞

=
T

ASх
Kiw λ

 is local surface Kirpichev 

number; 

             
a

TTxg
Ra T

υ
β )(3

∞−=  is local Rayleigh 

number; 

              
2

3 )(
υ

β ∞−= TTxg
Gr T   is local Grashof 

number; 

              
λ

εσ xT
Sk

3
0 ∞=  is local Stark number;            

            
)( ∞−

=
TT

xq
Nu

w

к

λ
 is local Nusselt number;           

             
a

ν=Pr  is Prandtl number;  

              
4

0

4
0

∞

+=
T

TAS e

εσ
εσβ  is complex dimension-

less parameter of microwave and heat radiations;   
               ε  is emissivity;  
                σ0 is Stefan-Boltzmann radiation con-
stants, W/(m2⋅К4);  
                ν is coefficient of kinematic viscosity, 
m2/s  a is coefficient of temperature conductivity, 
m2/s;  
                 λ is coefficient of heat conductivity, 
W/m⋅К; 

We will derive the asymptotics of problem 
(18) - (21), using the following property of inte-
gral Laplace transformation [3]. Low Fourier 
numbers Fo correspond to high values of Laplace 
transformation operator s, and conversely, high 
Fourier numbers are characteristic of low values 
of Laplace transformation operator s. Let us trans-
fer the system of equations (18) - (21) to the La-
place image space. As a result, we obtain 

 

          






 Θ=−Θ
dY

d

dY

d

s
L

L

1
           (22) 

 

      )(sKi
Y кL

L =
∂
Θ∂

   при Y = 0          (23) 

 

            0=
∂
Θ∂
Y

L     при Y = ∆т           (24) 

 
Here, index “L” is a parameter after La-

place transformation. Since )(sKiк  is a disturbing 
factor in this system, then the formal solution to 
system (22)–(24) is relationship 

 

          ),()(
1

sYFsKi
s кLL =−Θ            (25) 

 
where F(Y, s) is transfer function. Then, we will 
give the expression of this function for low and 
high values of transformation operator s  
 
1.1. Asymptotics of solutions for low Fo num-
bers (high s) 

At the initial stage of non-stationary heat 
transfer, the transfer process develops as in a 
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semi-infinite array because of the finite propaga-
tion rate of thermal perturbation. Thenб the sys-
tem of differential equations in images (22) - (24) 
can be presented as follows 

         
1 L

L

d d

s dY dY

Θ Θ − =  
 

       (22’) 

 

            )(sKi
dY

d
кL

L =Θ
     at Y = 0      (23’) 

     

           0=Θ
dY

d L                at Y → ∞       (24’) 

 
The solution to the system of equations 

(22’)–(24’) will be written as (25), where the 
transfer function F(Y, s) is presented as an asymp-
totic expansion into series by a small parameter, 
including high values of s. 

Then, we obtain 
 

n

sn

n

ss

s

e

s

e

s

e
sYsYF

−−−

+++≈ ϕϕϕ ...),(),(
2

21

  (26) 
 

Substituting  (26) into main equation (22’) 
and equations of boundary conditions (26) and 
(27), equating the terms of the same power with 
the exponent, we obtain the following chain of 
equations for determining ϕ1, ϕ2, ϕ3 

 

        0),(),( 11 =−′′ sYssY ϕϕ    (а) 
 

        0),(),( 22 =−′′ sYssY ϕϕ   (b) 
 

    ss =′ ),0(1ϕ , 0),(1 =∞′ sϕ (c) 
 

      0),(2 =′ sоϕ , 0),(2 =∞′ sϕ (d).        (27) 
 
Naturally, for high s, the main role belongs 

to the first term of expansion. The weight of sub-
sequent terms is constantly decreasing. Then, for 
the known expressions ϕ1, ϕ2, ϕ3, we can write 
down the solution for the temperature field image  

 

        
...)(

1 )2( +≈−Θ +− Ys
кL esKi

s         (28) 
 
Returning to the space of originals, using 

the convolution theorem, we can express the tem-
perature function as 

...
)(4

)2(
exp

)(

)2(
)(1

0

+








−
+−

−
+≈−Θ  η

ηηπ
η d

Fo

Y

Fo

Y
Ki

Fo

к

(29) 
 

Since Kiк under the integral includes non-
linearity in the form of the Stefan-Boltzmann law, 
it is possible to obtain only an approximate solu-
tion to equation (29). To this end, we approximate 
Ki к(η) in a vicinity of η ≈ Fo by Taylor series 
 

...)()()()( +′−+≈ FoiKFoFoKiKi ккк ηη     (30) 
 
where ‘ is time derivative. After integrating (30), 
we obtain the expression for calculation of the 
temperature field with consideration of two terms 
of asymptotic expansion

 

                            

...
2

2
)2(

4

2
exp2

2

)2(
)(

2

2
)(1),(

2

+



















 ++−






 +−×

×+′+






 +≈−Θ

Fo
Y

erfcY
Fo

Y
Fo

Y
FoiK

Fo

Y
erfcFoFoKiFoY кк

π

π
π

   (31) 
 

Here, special functions erfc and ierfc relate 
to the Gauss error function.  

According to (31), every next term has a 
higher order of smallness.  

Then, confining ourselves to the first term, 
we obtain an algebraic equation of the fourth de-
gree with respect to Θw 
 

 
 

...
1

)(

1
44

+≈
Θ−Θ−

−Θ
Fo

erfcFo
SkKi eww

w π
(32) 

 
 
whose real positive root is expressed in radicals. 
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To derive the solutions of increased accura-
cy, we can take into account the next term of as-
ymptotic expansion with derivative Ki’(Θw). 

Knowing the temperature field (31), we can write 
down the Nusselt number 

 

                           

w

к

d

dKiFo

dKi

dFoFoFoFo

Fo

Fo
erfcFo

Fo

FoNu

Θ
−











+

−−++

≈

π

ππ
π

1

43

2
1

2

1
)(                           (33) 

 
Analyzing solution (33), it can be stated 

that the Nusselt number decreases with increasing 

intensity of external heat transfer
w

к

d

dKi

Θ
. Thus, at 

the initial instants (Fo → 0), the limiting solutions 
corresponding to thermal conductivity of a semi-
bounded array are obtained 

 

   
Fo

FoNu
π=)(     at 

w

к

d

dKi

Θ
→ 0        (34) 

and 

    
Fo

FoNu
3,1

)( =     at 
w

к

d

dKi

Θ
→ ∞      (35) 

 
These results demonstrate that with increas-

ing 
w

к

d

dKi

Θ
, the process of convective heat transfer 

degenerates from the boundary conditions of the 
second kind to the boundary conditions of the first 
kind. The error of derived formulas does not ex-
ceed 3% of the exact values (Loytsyanskiy, 1962). 
The case of radiation cooling into a medium of 
zero temperature at low Fo allows the self-similar 
solution for both the surface temperature 

 

2. 
Z

Z
Z

w

w

413
8

2
1 2

+
+=

Θ
−Θ

 

      
3.  Nusselt number 
 

    

)41(3
4

1

1
)(

Z
Z

Fo
FoNu

+
+

=
π

  

    

where 3
w

Fo
SkZ Θ=

π
 is self-simulated variable. 

We should note that with an increase in Z, both 

the surface temperature and Nusselt number de-
crease. 

 
1.2.  Asymtotics of solutions for high Fo num-
bers (low s) 

For this case, we will present transfer func-
tion F(x, s) in the form of expansion by low pa-
rameter  s 
 

...),(),(),( s)(Y, 2
2

10 +++≈ sYssYssYF γγγ    (36) 

 
Substituting expression (36) to main equa-

tion (22) and equating the terms with similar ex-
ponents s, we obtain a chain of equations for de-
termination of γ0, γ1, γ2… 
 

00 =








dY

d

dY

d γ
, 0

1 γγ =








dY

d

dY

d
, 1

2 γγ =








dY

d
R

dY

d
…(37) 

 
Each equation of (37) requires two bounda-

ry conditions for the search of integration con-
stants. We will find the first constant from condi-
tion (24) 
 

0)(0 =∆=′ Yγ , 0)(1 =∆=′ Yγ , 0)(2 =∆=′ Yγ …(38) 

 
The second constant will be determined 

from integral relationships 
 

0
0

0 =









∆

dY
dY

d

dY

dТ γ
, 

 

dYdY
dY

d

dY

d ТТ


∆∆

=








0

0

0

1 γγ
,  

 


∆∆

=







TT

dYdY
dY

d

dY

d

0

1

0

2 γγ
    (39) 
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Using found expressions for γ0, γ1, γ2 and 
total solution (25) in images, we can return to the 
space of originals. As a result, the temperature 
function with consideration of three terms of as-
ymptotic expansion will take form 

 

...
30

7
)(

2

)(

12

1

62

)(
)(1

2
4

0

22

+







+∆−−∆−+

+










 ∆
−∆−+≈−Θ 

Y
Y

dFo

dKi

Y
KidKi

к

Fo

кк ηη
(40) 

 
Assuming in (40) that at Y = 0, Θ = Θw, we 

obtain the Volterra integral equation of the second 
kind relative to surface temperature Θw. Solving 
this equation with consideration of two terms, we 
will finally obtain 

 

w
w

w

w

w dFoSk
w

Θ
Θ−
−Θ+

Θ−
−Θ= 

Θ

1
2424

2

)(

)1(
2

)(

)1(
3

ββ
    (41) 

  

The meaning of complex parameter of mi-
crowave and heat radiation β  can be explained 
considering the condition on the plate surface  

)()( 44
0

44
0

0

ewкew

y

w TTqTT
y

T
q −+≡−+

∂
∂−=

=

εσεσλ (42) 

 

At qк = 0, value 4 β  is the limiting value 

of the surface temperature under the given condi-
tions. At non-stationary heat transfer, it varies 

within 41 β÷=Θw . Let us consider the limiting 

case of heat transfer at low and high Fourier num-
bers. At low Fo, thermal resistance of the heater 
thermal boundary layer is low, then Θw → 1. At 
high Fo, when thermal resistance of the heater 
thermal boundary layer is significant, heat transfer 
occurs predominantly through heat radiation, and 

4 β→Θw . Let us estimate a contribution of the 

integral in solution (41). With this purpose we 
will use the L'Hospital rule [8] 

 

0
04 2

1
2 3 4

4 2 4
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1, 1( ) 1
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
  (43) 

 
It follows from (43) that the relative contri-

bution of integral decreases with time from 1 to 0. 
This behavior also affects the Nusselt number 
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As a result, non-staionary heat transfer at 

the boundary conditions of the second kind 

3

2=FoNu  at low Fo degenerates gradually 

to 
3

1=FoNu , and this is typical of the 

boundary conditions of the first kind at high Fo. It 
is important to note that these limiting solutions 
differ from exact ones [16] with an error of up to 
7%. We represent the integral, accompanying so-
lutions (41),(43), (44), in elementary functions 
[8]. 
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The solutions take the simplest form at non-

stationary cooling of liquid by radiation into the 
environment of zero temperature. Here, β = 0 and 

previous solutions (41), (44) are simplified to 
form 
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Θ
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1
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3 1
21(1 )
w w w

w

Nu Fo
 Θ − Θ + Θ= + − Θ 

(47) 

 

IThe diagrams of calculations by derived 
dependences (41), (44) are shown in Figs. 3 and 4. 
It follows from the diagrams that the parameter of 
combined effect of microwave and thermal radia-
tion β has a significant effect on the temporal var-
iation of the surface temperature and Nusselt 
number.  

 

 
 

Fig. 3. Effect of complex parameter β on temperature of a vertical surface at natural convection under the conditions of 
non-stationary heat transfer 

 

 
 

Fig. 4. Change in the Nusselt number at natural convection near the vertical surface under  
the conditions of non-stationary heat transfer 

 
2. Stationary stage of radiation-convective heat 
transfer 

 
During the second stage at a predominant 

effect of convective terms, the determining system 
of equations looks like: 

                    0=
∂
∂+

∂
∂

yx

u υ
           (48) 

2

2
( )T

u u u
u v g T T

x y y
υ β ∞

∂ ∂ ∂+ = + −
∂ ∂ ∂

        (49) 

 

    2

2

y

T
a

y

T
v

x

T
u

∂
∂=

∂
∂+

∂
∂

            (50) 

with boundary conditions 
      
                 at у = 0  
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                        u = v = 0              (51) 
 

кeww qTTq
y

T ≡−−=
∂
∂− )( 44

0εδλ        (52) 

 
              u = 0            (53) 
 

                         0=
∂
∂
y

u
            (54) 

 
                          T = T∞,            (55) 
 

           0=
∂
∂

y

T
            (56) 

 
A characteristic feature of the system of 

equations (48) - (56) at its analytic description is, 
firstly, the interrelationship of equations of mo-
mentum and energy transfer. Secondly, it is twice 
nonlinear because of both momentum conserva-
tion equation (49) and equation of boundary con-
dition (52). In this connection, we can seek only 
its approximate solutions. At the first stage, we 
linearize the convective terms by introducing the 
effective rate of transfer  

 

              
yx

u
x

xU эф ∂
∂+

∂
∂=

∂
∂ υ)(        (57) 

 
This linearization is based on Oseen ap-

proach [14]. As for the first stage of non-
stationary heat transfer, the solution to the thermal 
problem will be sought using an asymptotic ex-
pansion with the procedure of Laplace integral 
transformation. As a result, asymptotics of solu-
tion with consideration of two terms of expansion, 
is as follows  
 


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x
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  (58) 

 
where η is integration variable. Using the condi-
tion at the external border of the boundary layer at 
y = δ  Т = Т∞, we obtain from (58)  
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2
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and then the temperature profile 

 

            
2
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the connection of Tw with qк and boundary layer 
thickness follows from this profile at у=0  

 

                  
λ
δ

2
к

w

q
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The solution to equation of motion (49) is 

derived similarly, and at known temperature (60) 
with consideration of boundary conditions (51)–
(56) it gives the following profile of longitudinal 
velocity 
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      (62) 

 
We should note that the effective transfer 

rate U(x) (57) depends in a complex way on y. 
Pursuing the goal of obtaining the approximate-
analytical formulas, we will simplify it slightly, 
expressing as the average integral one over the 
boundary layer thickness  
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Turning to variable x, according to (63), we 

represent integral equation (59) as 
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Integral equation (64) allows closed solu-
tion 
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We point out as an important circumstance 
that the integral in (65) is expressed in elementary 
functions. In the dimensionless form it is 
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Here, 4 β  also determine the maximal sur-

face temperature under the given conditions. 
Using the L'Hospital rule [8], we can esti-

mate the contribution of integral (66) in solution 
(65) for the limiting cases. Near the leading edge 
of the plate Θw → 1, where convective heat trans-

fer predominates. At a large distance from the 
leading edge, where radiant heat transfer 

4 β→Θw prevails due to the large thermal re-

sistance of the boundary layer 
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Thus, this integral decreases from 1/3 to 0. 

Relationship (65) can be presented in dimension-
less form 
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It is also possible to determine the Nusselt 

number  
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As it was already mentioned, near the lower 

edge of the plate, Θw → 1. Then, the Nu number 
corresponds to the boundary conditions of the 
second kind 

                       4

105

4Ra
Nu=            (70) 

At a distance from the leading edge of the 

plate, 4 β→Θw  and Nu number corresponds to 

the boundary conditions of the first kind 
 

                   4

35

Ra
Nu=             (71) 

 
The latter indicates that in the regime of sta-

tionary radiation-convective heat transfer, as the 
boundary layer develops, convective heat transfer 
also degenerates from the boundary conditions of 
the second kind to boundary conditions of the first 
kind. These limiting solutions with an accuracy of 
4% are consistent with the exact values [16]. 

It also follows from the limiting solutions 
that a number of simplifying assumptions in the 
solution at stage 2 (linearization of convective 
terms according to (57), simplification of U (x) to 
the average integral expression over the boundary 
layer thickness, and keeping a finite number of 
terms of asymptotic expansion) do not significant-
ly affect the accuracy of final results and they are 
completely justified. This again indicates effec-
tiveness of the applied asymptotic method for cal-
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culating heat transfer in the boundary layer at nat-
ural convection. The obtained solutions confirm 
reliably the qualitative study of R. Cess [1]. 

In the case of liquid cooling to the medium 
with zero temperature (β=0), the solutions become 
significantly simpler   

 

                          

5

16 11 12 13 14 15

4

( 1) 5 1 1 6 2 1

3 11 3 13 7 15

1 35

77.117

w

w w w w w w

Sk

Ra

 Θ − + − + − + − Θ Θ Θ Θ Θ Θ 

− =

   (72) 

 

                     

4/1

54

162545

4

)1(

151377157

2

13

6

311

3

5
1

35





















−Θ
⋅⋅

Θ−






 Θ+Θ−Θ+Θ−Θ

+=
w

wwwwww

Ra
Nu                 (73) 

 
The obtained solutions (72), (73) are illus-

trated by the diagrams in Figs. 5, 6. It follows 
from the figures that with a distance from the 
leading edge, the Nusselt number changes from 
the boundary conditions of the second kind to the 

boundary conditions of the first kind. With an in-
crease in complex parameter β, the process of 
transition to the boundary conditions of the first 
kind accelerates. 

 

 
 

Fig. 5. Change in the stationary temperature of heat-radiating 
surface along the height under the conditions of natural convection 

 
 

Fig. 6. Change in the stationary Nusselt number along the surface height at natural convection 
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The above-developed method for solving 

the nonlinear heat transfer problem at natural con-
vection can be extended to liquids with variable 
thermal-physical properties subjected to the linear 
law, using the Dorodnitsyn transformation [4]. 
Comparing the obtained results with data of R. 
Cess [1], we note that application of the perturba-
tion method to the problem solved here has a 
number of fundamental drawbacks. Thus, the ex-
isting solutions [1] do not take into account the 
effect of complex parameter of microwave and 
thermal radiation β on the process of convective 
heat transfer. To consider parameter β, it is neces-
sary to derive the higher approximations by R. 
Cess, which, in turn, makes it necessary to solve 
the system of complex third-order differential 
equations, and this is possible only numerically. 

 
3. Harmonization of unsteady and stationary 
solutions at natural convection  

 
To join obtained solutions (41), (44) and 

(68), (69), it is necessary to determine the spatial-
temporal characteristics, when both solutions are 
valid. On the boundary between these areas, the 
solutions must be joined under the condition of 

equality of temperatures and heat fluxes. The ob-
tained general solution must satisfy initial energy 
equation (4) and corresponding boundary condi-
tions. To find the boundary of transition from the 
non-stationary solution to the stationary one, we 
will use the energy equation in integral form to 
get the simple connections 
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Substituting temperature (60) and velocity 

(62) profiles into equation (74), we obtain 
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The methods of solution to this equation are 

presented in hand-book [9]. To solve (75), let us 
make transformation excluding the boundary layer 
thickness, according to (61). Using boundary con-
dition (42) and making differentiation, we write 
down (75) in the form 
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Solving this equation by the method of characteristics [9] gives the system of ordinary differential 

equations 
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The sought solution, describing the motion 
of the joining boundary between the unsteady and 
stationary solution, is determined by the differen-

tial equation that consists of the first two terms of 
characteristic system (77) 

 

                 

[ ] 











−−
−+

−−
−

=

−−
−+ ∞∞∞

344
0

3
0

4

244
0

32

44
0

3
0

)]([

4)(12

)(

)(5

35

2
)(

)(4
2

eww

ww

eww

w

eww

ww

TTq

TTT

TTq

TTg

dx

TTq

TTT

dt

εδ
εδ

εδυ
λβ

εδ
εδ

  (78) 

 
The integral of the last equation with con-

sideration of initial condition х=0 at t=0 and 
known relationship for surface temperature (41) 
allows determination of a point of transition from 
the unsteady solution to the stationary one. As a 
result, the coordinate of stabilization point xs will 
be determined along the plate by dependence 
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Pursuing the goal of obtaining the analyti-

cal assessments of connection xs = f(t), we will 
find theses dependences in the limit cases for low 

(Θw → 1) and high 4 β→Θw . Using the Taylor 

expansions into series, we will obtain for the ini-
tial stage of the process 
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Substituting approximate estimate (80) in 

form 

              ( ) 2/1
3

0 3
1

1
at

Tw

λ
εδ

β
∞≅

−
−Θ

         (81) 

 
into integral relationship (79) and perform-

ing integration, we will obtain, limiting ourselves 
by the first term, dynamics of motion of a stabili-
zation point at the initial stage  
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at Θw → 1, i.e., 
 
                              xs ≈ t5/2           (83) 
 

This relationship is in a good agreement 
with data of other researchers [15]. 

The similar estimate can be obtained for 
time-concluding stage, performing Taylor expan-

sion in a vicinity of 4 β→Θw . Presenting the 

approximate estimate in form  
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and introducing it into integral (79), limiting our-
selves by the first term, we will obtain the de-
pendence of stabilization point coordinate on time  

 

     2

Pr

)(257.0
t

TTg
x wT

s
∞−≅ β

,           (85) 

at 4 β→Θw , i.e.,  

                           xs ≈ t2  
 
These data agree well with [15]. Solutions 

(82), (85) show that the time of steady-state re-
gime beginning decreases with increasing intensi-
ty of thermal radiation, that is, the velocity of 
characteristic increases as it moves away from the 
leading edge of the plate.  
 
4. Experimental verification of the theoretical 
model of radiation-convective heat transfer at 
natural convection  
 

In order to check the admissibility of the 
chosen simplifications in constructing the mathe-
matical model and accuracy of theoretical results, 
we carried out a program of experimental studies 
on stationary natural convection near a vertical 
surface. Theoretical solutions of this problem, 
presented in Sections 1, 2, made it possible to ex-
press the determined parameters of the stationary 
radiation-convective heat transfer as a function of 
two determining complexes, namely: 
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4/1 −− = SkRafNuRa β         (87) 
 
The detailed description of experimental 

design, selected diagnostics, experimental tech-
niques, measurement schemes, processing of ex-
perimental data and their generalization, devel-
opment of a laboratory setup, and estimation of 
experimental error are the subject of separate pub-
lication of the authors. 

The theoretical and experimental values of 
the surface temperature and Nusselt number at 
natural convection are compared in Figs. 7 and 8. 
In these experiments, the maximal theoretical 
measurement error by dimensionless temperature 
was within 5.6% ≤ Ro ≤ 7.0%, and by Nusselt 
number, it was within 9.0% ≤ PNu ≤ 12.1%. The 

diagrams show the reliable correspondence of 
theoretical and experimental results with an error 
not exceeding the maximal theoretical values. The 
figures also show that the effect of heat radiation 
leads to degeneration of the Nusselt number from 
the values corresponding to the boundary condi-
tions of the second kind to the values 
characteristic for the boundary condition of the 
first kind. The rate of this transition is determined 
by complex parameter of microwave and thermal 
radiation β. The experiment confirms the adequa-
cy of the mathematical formulation of the problem 
of dielectric heating of liquid in the regime of nat-
ural convection under non-stationary radiation-
convective heat transfer, ensures the validity of 
simplifications introduced at theoretical analysis, 
and guarantees the effectiveness of the developed 
method for solving the nonlinear problems of such 
complex heat transfer. 

 

 
 

Fig. 7. Comparison of theoretical (solid line, relationship (68)) and experimental results  
(× – current study, • – data of [11]) on distribution of surface temperature under 

the conditions of stationary natural convection at β=2.8 
 

 
 

Fig. 8. Comparison of theoretical (relationship (69) – solid line) and experimental results  
(× – current study, • – experiments of [11]) on the Nusselt number at stationary natural convection, β=2.8 
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Conclusion 
 
1. A class of nonlinear problems on liq-

uid heating at natural convection under the influ-
ence of microwave energy with a small depth of 
penetration under the conditions of non-stationary 
radiation-convective heat transfer is investigated. 
At theoretical analysis, construction of approxi-
mate solutions using asymptotic procedures was 
the most fruitful. 

2. In order to obtain the calculated de-
pendences on the temperature fields and Nusselt 
numbers at natural convection near the vertical 
surface, an approximate idea of complex heat 
transfer as a combination of two successive stages 
(non-stationary and steady) was introduced. Based 
on this approach, using the asymptotic expan-
sions, the solutions for the indicated stages were 
derived and compared for the limiting values of 
the regime parameters. The solutions for non-
stationary and stationary heat transfer were joined 
by the “vertical coordinate-time” characteristic. 

3. The developed method made it possi-
ble to perform a detailed analysis of complex heat 
transfer even before complex calculations and re-
veal the main regularities. It is shown that thermal 
radiation leads to a change in convective heat 
transfer from the boundary conditions of the sec-
ond kind to the boundary conditions of the first 
kind. The rate of this transition is determined by 
the complex parameter of microwave and thermal 
radiation β. 

4. To confirm the correct choice of the 
mathematical model and corresponding simplifi-
cations introduced, steady natural convection was 
studied experimentally. Comparison of theoretical 
and experimental results gives relatively accurate 
agreement.  

5. The developed method for solving the 
nonlinear problems of natural convection makes it 
possible to take into account the linear character 
of a change in hydrodynamic and thermal-
physical properties of heated liquid, introducing 
the transformation of A.A. Dorodnitsyn. 
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Аннотация 
Изучен класс нелинейных задач диэлектрического нагрева жидкости в режиме естественной конвек-
ции около вертикальной поверхности в условиях нестационарного радиационно-конвективного теп-
лообмена при микроволновом воздействии с малой глубиной проникновения. Решения этих задач 
осуществлено на последовательных стадиях неустановившегося и стационарного теплообмена с при-
менением весьма эффективных асимптотических разложений. Сшивка нестационарной и установив-
шейся частей решений выполнена на характеристике «вертикальная координата – время». Построен-
ные на таких  подходах решения находятся в надежном согласии с точными предельными решения-
ми. Погрешность их не выходит за пределы 7%. По мере удаления от нижней кромки вертикальной 
поверхности происходит изменение конвективного теплообмена от значений, свойственных гранич-
ному условию второго рода, до величин, характерных для граничного условия первого рода. Ско-
рость этого перехода сильнейшим образом зависит от комплексного параметра СВЧ и теплового из-
лучений. Важным достоинством решений данного класса внешних задач является то, что еще до про-
ведения сложных расчетов становится возможным провести исчерпывающий анализ закономерно-
стей изучаемых процессов. При этом, не смотря на целый ряд вводимых исходных упрощений, по-
следние существенно не сказываются на точности конечных результатов, гарантируя достоверную 
количественную информацию. Разработанный метод может быть расширен на режимы естественной 
конвекции с линейной зависимостью физических свойств жидкости от температуры, применяя пре-
образование А.А.Дородницына. Для подтверждения адекватности построенной математической мо-
дели проведено экспериментальное исследование стационарного радиационно-конвективного тепло-
обмена. Сравнение результатов теоретического и опытного исследования показывает их достаточное 
соответствие. Это еще раз подтверждает эффективность разработанного метода построения теорети-
ческих решений нелинейных задач естественной конвекции с использованием асимптотических про-
цедур. 
Ключевые слова: диэлектрический нагрев, нестационарный теплообмен, конвекция 
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Аннотация 
Кіші тереңдіктің енуімен микротолқынды әсер кезінде стационарлы емес сәулелену-конвективтік 
жылу беру жағдайында тік бетіне жақын табиғи конвекция режимінде сұйықтықтың диэлектрлік 
қызуының сызықты емес мәселелері зерттеледі. Аталған проблемаларды шешу өте тиімді 
асимптоталық кеңейтуді қолдану арқылы тұрақсыз және стационарлық жылу алмасудың дәйекті 
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кезеңдерінде жүзеге асырылады. Ерітінділердің стационарлық емес және тұрақты күй бөліктерінің 
тігісі «тік координаталық уақыт» сипаттамасында орындалады. Осындай көзқарастар бойынша 
жасалған шешімдер дәл шекті шешімдермен сенімді келіседі. Олардың қателігі 7% -дан аспайды.  Тік 
қабат төменгі жиектен алынады, конвективті жылу алмасу екінші түрдегі шекаралық жағдайға тән 
мәндерден бірінші түрдегі шекаралық жағдайға тән мәндерге өзгереді. Бұл өтпелі кезеңнің 
жылдамдығы өте жоғары жиіліктер мен жылу сәулелерінің күрделі параметріне байланысты.  
Сыртқы проблемалардың осы класындағы шешімдердің маңызды артықшылығы - күрделі есептерге 
дейін зерттеліп жатқан процестердің заңдылықтарын толық талдау жасауға мүмкіндік береді. 
Сонымен қатар, бірқатар бастапқы оңайлатулар енгізілгеніне қарамастан, соңғы сандық деректерге 
кепілдік беретін түпкілікті нәтижелердің дұрыстығына айтарлықтай әсер етпейді. 
Әзірленген әдіс А.А. Дороднициннің трансформациясын қолдана отырып, сұйықтықтың физикалық 
қасиеттерінің температураға сызықтық тәуелділігі бар табиғи конвекция режимдеріне дейін 
кеңейтілуі мүмкін. Құрылған математикалық модельдің барабарлығын растау үшін стационарлық 
радиациялық-конвективтік жылуды тәжірибелік зерттеу жүргізілді. Теориялық және эксперименттік 
зерттеулердің нәтижелерін салыстыру олардың жақсы келісілгенін көрсетеді. Бұл асимптотикалық 
процедураларды қолдана отырып, табиғи конвекцияның сызықты емес міндеттерінің теориялық 
шешімдерін жасаудың әзірленген әдісінің тиімділігін тағы да растайды. 
Түйін сөздер: диэлектрлік жылу, стационарлық емес жылу беру, конвекция 

 
 
 


