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Abstract

A class of nonlinear problems of liquid dielecthieating in the regime of natural convection neaerdi-

cal surface under the conditions of non-statiomadjation-convective heat transfer at microwavéuinf
ence with a small depth of penetration is studigtkese problems are solved using highly effective as
ymptotic procedures at the successive stages oftadionary and stationary radiation-convectivethea
transfer. The non-stationary and stationary pdrsotutions are joined by the “vertical coordingitae”
characteristic. The solutions, derived on thesagples, are in good agreement with the exact it
solutions. The error is within the limits of 7%. Wi distance from the lower edge of the verticalaze,
convective heat transfer changes from the valuasacteristic of the boundary condition of the seton
kind to the values characteristic of the boundamydition of the first kind. The rate of this tratiain de-
pends significantly on the complex parameter ofravi@ve and thermal radiation. An important ad-
vantage of solutions to this class of external faois is the fact that even before complex caloufatiit

is possible to perform an exhaustive analysis effgfatures of the studied processes. Moreover jtdesp
number of initial simplifications, the latter dotreignificantly affect the accuracy of results, ardeeing
reliable quantitative information. The developedtime can be also extended to the regimes of natural
convection with linear dependence of physical prigg on temperature, using the Dorodnitsyn trans-
formation. To confirm the adequacy of the constdanathematical model, an experimental study ef sta
tionary radiation-convective heat transfer carried. Comparison of theoretical and experimentah dat
shows that they are in a good agreement. This agmaifirms the effectiveness of the developed method

for constructing theoretical solutions to the noeér problems of natural convection using the asgtitp

procedures.

Keywords: dielectric heating, nonstationary heat transfenyeation

I ntroduction

The historically new type of heating with
the help of microwave energy has attracted an in-
creasing number of researchers, technologists,
designers and other specialists in expanding the
scope of this non-standard heat source in various
processes and technologies. First of all, such
unique properties of microwave radiation as iner-
tia-free character, concentrating huge power in the
right place during a given time period, long-
distance transmission in the absence of a heat-
carrying medium, almost total conversion of mi-
crowave energy into heat, etc. are relevant now [2,
14].

Examples of successful application of mi-
crowave radiation are as follows: heat treatment
of materials for various purposes; microwave dry-
ing of agricultural products; enrichment of ores by
microwave exposure; microwave pyrolysis and

gasification of coal fuel; microwave dispersion of
solid materials, etc. In a number of chemical tech-
nologies, the use of microwave radiation acceler-
ates the rate of chemical reactions by tens and
hundreds of times.

The problems of dielectric heating of vari-
ous moving media remain topical at the present
stage. Especially they are in demand in the pres-
ence of such complicating factors as non-
stationarity, complex radiation-convective heat
transfer, non-linear heat transfer by heat radiation
to the environment, etc.

This paper is devoted to a theoretical study
of the problem of microwave heating in the case
of natural convective motion of liquid near a ver-
tical surface under the conditions of nonstationary
radiation-convective heat transfer.
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Problem statement

In this case, the free-convective motion of
liquid is caused by heterogeneous heating near a
vertical surface and it is determined by the coeffi-

cient of volume expansigf, :_l(d_pj . The

p\dT )/,
boundary-layer model proved to be very fruitful
for mathematical description of such transport
processes [14]. According to Yang's studies [5],
using the perturbation method [17], consideration
of the higher-order terms is justified only near the
leading edge of the plate at very low temperature
gradients, that is, near the boundary of boundary
layer initiation. In a laminar flow, the effect vis-
cous dissipation and external pressure gradient is
usually insignificant. Due to small temperature
differences, variability of the thermophysical
properties of liquid can be neglected.

Natural convection of liquid occurs near the
vertical surface of a plate with low thermal re-
sistance, heated by absorption of microwave radi-
ation by the near-surface zone due to the small

penetration depth. The surface heat flux density q
applied to liquid is expressed as follows
f=AS, (1)
where S is flux density of microwave radiation,
W/m?;
A is absorption coefficient of microwave
radiation.
This source of heat energy, ¢ dissipated
in liquid by temperaturél. under the action of
convection mechanism and heat radiation into the
environment. Below we consider two modifica-
tions of the studied system (Figs. 1 and 2). In the
first case, thermal radiation passes through dia-
thermic washing liquid (Fig. 1). In the second
case, heat transfer from the system filled with
dropping liquid to the environment occurs through
a vacuum interlayer (Fig. 2). As a result, the goal
is to identify the regularities of the influence of
microwave and thermal radiation, nonstationarity,
vertical coordinate, etc. on convective heat trans-
fer.
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Fig. 1. Microwave heating at natural convectiorttoa heat-radiating surface in a diathermic medium
(Hydrodynamic boundary layer, microwave radiatitiermal boundary layer,
thermal radiation, ambient medium, diathermic magi
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Fig. 2. Microwave heating of liquid, which does m@nsmit thermal radiation, at natural convection

(ambient medium, thermal radiation,vacuum, microsveadiation,

hydrodynamic boundary layer, liquid not transmijtihermal radiation, thermal boundary layer)
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The stated problem in approximation of  following initial-boundary problem in the form of

the boundary layer is reduced to solution of the differential laws of conservation of:

mass
ou 6v =0,
ax ay
momentum
DU _du . ou du _ 0°u
— == HU— + V—=u— + T=-T),
g o ax T Vay Yoy 0T
and energy

DT _oT oT aT 62T
_=— +tu— + — = ad—F,
dt ot ax ay oy

The solution to system (2)—(4) should meet the following initial and boundadjtioms
fory=0

fory=29

202
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au:

oy

0, 9)
T=T (10)
(11)
T=T (12)
T=T, (13)
=0 (14)

Here, X, y are longitudinal and transverse
coordinates, m; t is time, s v are longitudinal
and transverse velocity components, mi§; T,

Tw, Te are current, outer, surface and environment
temperatures; qw, ¢ are surface and convective
heat flux densities, W/tntw is shear stress on the
wall, n/m?; &is boundary layer thickness, m; g is
acceleration of gravity, n¥sp. is coefficient of
volumetric expansion.

Now it is impossible to find an exact ana-
Iytical solution to equations (3) and (7) because of
their nonlinear character. The only way is to con-
struct the approximate solutions to system (2)-
(14) with a controlled error. The common ap-
proach is consideration of transfer process at three
successive stages [10]

non-stationary

D_o
—=—, 15
Dt ot (13)
transient
EEi+ui+vi, (16)
dt ot ox ot
and steady
25 ui+vi (17)
dt ox ot

At the first stage, the basic transport
mechanism is molecular. Such an approximate
description of the initial stage of non-stationary
radiation-convective heat transfer is used some-
how for all approximate analytical solutions [10],
and it corresponds to the development of a real
process with acceptable accuracy. The transition
stage, due to its short duration and complexity,

usually “contracts to the point”. This method is
widely used in convective heat transfer. At the
third stage, the molar transport mechanism plays
the main role. This regime will replace the previ-
ous one, when perturbations from the bottom edge
of the plate reach the considered point. For steady
radiation-convective heat transfer, non-stationary
transfer becomes less pronounced as compared
with the convective one. Even in the case of a rel-
atively rapid change in the wall temperature, one
can successfully apply the assumption of the sta-
tionary character of radiation-convective heat
transfer immediately after passing through the
non-stationary stage of the process [7]. The gen-
eral solution is found after the “joining” the non-
stationary and stationary stage along the charac-
teristic passing in the “longitudinal coordinate-
time” plane.

Then, it is assumed that the thicknesses of
hydrodynamic and thermal boundary layers are
also equal. This is possible, since thermal stratifi-
cation and initiated lift are localized within the
temperature boundary layed. The thermal-
convective flow caused by this force should ex-
tend beyond the limits of the thermal boundary
layer because of viscosity. However, according to
the data of [6], illustrating the thermal and veloci-
ty fields, this effect is evident only for very vis-
cous liquids (Pr >> 1). Thus, for most cases, prop-
agation of the flow field beyond the thermal
boundary layer is unimportant.

In view of these two circumstances, and in
connection with the presence of nonlinearities,
initial-boundary problem (2) - (14) will be solved
by an approximate method based on the apparatus
of effective asymptotic expansions [13]. First,
such solutions are very common because of their
compactness. Secondly, to increase the accuracy,
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we can attract the subsequent terms of asymptotic q ,
expansion. Nu=ﬁ is local Nusselt number;
' )

1. Non-stationary stage of heat transfer Pr=£ is Prandtl number:

a
The problem statement for the non- AS+£0.T*
stationary stage of heat transfer in dimensionless L= 2 € is complex dimension-
variables takes form 0,1,
less parameter of microwave and heat radiations;
00 9% £ is emissivity,
ﬁ: aY?2 (18) 0o is Stefan-Boltzmann radiation con-
stants, W/(rfiK%);
Fo=00=1 (19) , v is coefficient of kinematic viscosity,
m‘/s ais coefficient of temperature conductivity,
50 mé/s;
Y=0 —=Ki,-SkO,-0%) =Ki_ (20) A is coefficient of heat conductivity,
oY W/mK;
We will derive the asymptotics of problem
Y =A 5_@_ (18) - (21), using the following property of inte-
T = (21) : )
oY gral Laplace transformation [3]. Low Fourier
numbers Fo correspond to high values of Laplace
y transformation operator s, and conversely, high
whereY=|— is dimensionless transverse coordi-  Fourier numbers are characteristic of low values

of Laplace transformation operator s. Let us trans-

nate; fer the system of equations (18) - (21) to the La-

@zTL, o, :I_W , O, :E are dimen- place image space. As a result, we obtain
sionless current, surface and environment temper- _}:i do, (22)
atures; b s odyldy

at . -
Fo=— is local Fourier number;
X 00,

5 =Ki,(S) mpuY=0 (23)
Azl— is dimensionless thickness of oy
boundary layer;
y ny 99, =0 mpuY =A (24)
Ki.=—* is local convective Kirpichev oY
number: ” Here, index “L” is a parameter after La-
AS o place transformation. Sindéi (s) is a disturbing
K'WZ_AT is local surface Kirpichev factor in this system, then the formal solution to
© system (22)—(24) is relationship
number;
3
x’(T-T,) . : 1 .
Ra=% is local Rayleigh O, -==Ki (s)F(Y,s) (25)
S
number;
B gﬂrx3(T -T.) . where F(Y, s) is transfer function. Then, we will
Gr——U2 is local Grashof give the expression of this function for low and
number: high values of transformation operator s
E0,T, X 1.1. Asymptotics of solutions for low F -
Sk= is local Stark number: 1. Asymptotics of solutions for low Fo num

bers (high s)
At the initial stage of non-stationary heat
transfer, the transfer process develops as in a
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semi-infinite array because of the finite propaga-
tion rate of thermal perturbation. Tlethe sys-
tem of differential equations in images (22) - (24)
can be presented as follows

1 _ d(doe,
- - = — 22’
Y s dY( dYJ (e2)
do . ,
dYL =Ki,(s) atY=0 (23)
©. _g atYs oo (24)
dy

The solution to the system of equations
(22)—(24) will be written as (25), where the
transfer function F(Y, s) is presented as an asymp-
totic expansion into series by a small parameter,
including high values of s.

Then, we obtain

cry y RER AE e
= ——+ +.AG——
(V.9=a(Y.9) 7 9, S 9, S o)

Substituting (26) into main equation (22’)
and equations of boundary conditions (26) and
(27), equating the terms of the same power with
the exponent, we obtain the following chain of
equations for determiningy, ¢», ds

1 (Y,8)—s¢,(Y,s)=0 @)

$.0.9)=Vs ¢)(=,9=0,

¢, (O’S):O,¢'2 (°°,S):0(d)_ (27)
Naturally, for high s, the main role belongs
to the first term of expansion. The weight of sub-
sequent terms is constantly decreasing. Then, for
the known expressiong:, ¢o, ¢3, we can write
down the solution for the temperature field image

o-L=Ki (967 + .
S

(28)

Returning to the space of originals, using
the convolution theorem, we can express the tem-
perature function as

ofuin 2

(Y+2) }
ex dn+..
%«wa) (29)

Since Ki under the integral includes non-
linearity in the form of the Stefan-Boltzmann law,
it is possible to obtain only an approximate solu-
tion to equation (29). To this end, we approximate
Ki«(n) in a vicinity ofn = Fo by Taylor series

Ki.(7) =Ki (Fo)+(17—-Fo)Ki' (Fo)+... (30)

where ‘ is time derivative. After integrating (30),
we obtain the expression for calculation of the
temperature field with consideration of two terms

#;(Y.9)=54,(Y.9)=0 of asymptotic expansion
1 =~Ki Y +2 . (Y+2)><
O(Y,Fo)-1 KIK(FO)«/HFOerfc(—zﬁj+K|K(Fo) T
cJo o]~ L2 oo Y22 75 ) ..
(31)

Here, special functions erfc and ierfc relate
to the Gauss error function.

According to (31), every next term has a
higher order of smallness.

Then, confining ourselves to the first term,
we obtain an algebraic equation of the fourth de-
gree with respect 6y

o,-1
Ki,, - SKO’ -07)

1
=+ 7Foerfc—+...
v Fo

(32)

whose real positive root is expressed in radicals.
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To derive the solutions of increased accura-
cy, we can take into account the next term of as-
ymptotic expansion with derivative K&y).

Knowing the temperature field (31), we can write
down the Nusselt number

Nu(Fo) =

1

Fo 1
== +2Fo+erfc—— -
V4 v Fo

(33)

@+ Fo+v Fo @
Fo

3T iyrs dKi

2 1- /@ dKi,
T do,

Analyzing solution (33), it can be stated
that the Nusselt number decreases with increasing

. . Ki

intensity of external heat transf%r—". Thus, at
do,

the initial instants (Fo- 0), the limiting solutions

corresponding to thermal conductivity of a semi-

bounded array are obtained

NuFo)= |- L atdKk o (aq
Fo do,,
and
Nu(Fo) == o 9Kk o (35

JFo  do,

These results demonstrate that with increas-

. dKi,
ing
degenerates from the boundary conditions of the
second kind to the boundary conditions of the first
kind. The error of derived formulas does not ex-
ceed 3% of the exact values (Loytsyanskiy, 1962).
The case of radiation cooling into a medium of
zero temperature at low Fo allows the self-similar
solution for both the surface temperature

, the process of convective heat transfer

_ 2
2. O, 1:22+§ Z
o, 31+47
3. Nusselt number
Nu(Fo) Fo_ 1
T 4. 47
3(1+42)

F
where Z = Sk, /—O O is self-simulated variable.
m

We should note that with an increase in Z, both

the surface temperature and Nusselt number de-
crease.

1.2. Asymtotics of solutions for high Fo num-
bers (low s)

For this case, we will present transfer func-
tion F(x, s) in the form of expansion by low pa-
rameter s

F(Y,8)= ), (Y,9) +s),(Y,9)+S),(Y,9) +... (36)

Substituting expression (36) to main equa-
tion (22) and equating the terms with similar ex-
ponents s, we obtain a chain of equations for de-
termination ofyo, y1, Yo...

d (dy, d dyj d \(( dyj

—| 22 =0,—| 2 |=y,,—| R—2 |=)...(37

dY(de dY(dY % d dy A7)
Each equation of (37) requires two bounda-

ry conditions for the search of integration con-

stants. We will find the first constant from condi-
tion (24)

Yo(Y=4)=0,).(Y=20) =0, ),(Y=04)=0...(38)

The second constant will be determined
from integral relationships

ATd dy A;
—| 22 |dY = dy (39
[l o

o
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Using found expressions fap, yi1, y» and
total solution (25) in images, we can return to the
space of originals. As a result, the temperature
function with consideration of three terms of as-
ymptotic expansion will take form

0-1= FJ?KiK (n)dn+ KiKl:(Y _ZA)Z -

2

— |+

6}

(40)
; NY

GLAK =8 e, T

12dFo| 2 30

Assuming in (40) that at Y = @ = Oy, we
obtain the Volterra integral equation of the second
kind relative to surface temperatuBs,. Solving
this equation with consideration of two terms, we
will finally obtain

The meaning of complex parameter of mi-
crowave and heat radiatiof can be explained

considering the condition on the plate surface

qN=—A%T +eq(T!—TH= q +6q(Ti T (42)
y=0

At g« = 0, value4/f is the limiting value

of the surface temperature under the given condi-
tions. At non-stationary heat transfer, it varies
within © ,=1+%/4 . Let us consider the limiting
case of heat transfer at low and high Fourier num-
bers. At low Fo, thermal resistance of the heater
thermal boundary layer is low, théd, - 1. At
high Fo, when thermal resistance of the heater

thermal boundary layer is significant, heat transfer
occurs predominantly through heat radiation, and

o o, - Q/ﬁ Let us estimate a contribution of the
3SKEo= (., ‘41)2 +2J‘ (0, 41)2d@ (a1) integral in solution (41). With this purpose we
(B-0%) (B-02) will use the L'Hospital rule [8]
O,
0
_ Jl- - @4 do, o 1 1 npu O, -1
lim 5 =lim 3 (43)
W _ A\ , npu -
©, - . .. %0, -0 mu o, - {F
(B - ©))° ) B - O,

It follows from (43) that the relative contri-
bution of integral decreases with time from 1 to O.
This behavior also affects the Nusselt number

1 ] (,B—We“l)zdew
NU(FO)= e 1+ : ©. ) (44)
(B-0.)°

2
Nw/ Fo= 5 at low Fo degenerates gradually

1
to NuwFo=—
N3

boundary conditions of the first kind at high Fo. It
is important to note that these limiting solutions
differ from exact ones [16] with an error of up to
7%. We represent the integral, accompanying so-
lutions (41),(43), (44), in elementary functions

, and this is typical of the

As a result, non-staionary heat transfer at [g).
the boundary conditions of the second kind
I(e .~Ddo, _0,0,-), 1 \/ﬁ+ez
(B-OL7 4B(B-©L) 88JF  JB-©: )
4 a3 +
—3\/2 I \/E ®W+2arctge

1657 | JB-0,

JpB

The solutions take the simplest form at non-
stationary cooling of liquid by radiation into the
environment of zero temperature. Hgses 0 and

previous solutions (41), (44) are simplified to
form
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1 1+40 -60? IThe diagrams of calculations by derived
SS%FO:Z-FW (46) dependences (41), (44) are shown in Figs. 3 and 4.
w It follows from the diagrams that the parameter of
1 combined effect of microwave and thermal radia-
60 - 70°+ O° 2 . L
Nu +3Fo = W w w4 1| (47) tion 3 has a significant effect on the temporal var-
211 - ©,) iation of the surface temperature and Nusselt
number.
1.0 = = T -
611'_1 1/ l// //’ /// ”4
0.8 i/gil // /// // // /// p
Lt
0.6 / / /11y // d
B =1000 | [B=100 |16, 2/0.{5/ 0.6 02 |[00
/ / { A
0.4 / / / / /| % //
f/ // ’/ !/ /// s 4 / //
/] V]
0 2 /// {l/ // / ///,/ /
d ( // d /1 /;/ /’/ 1/ ///
. P 7] 7 7 L >
il ol gl el Skv/Fo
1042 4 1032 4 1022 4 102 4 10°2 4 10!

Fig. 3. Effect of complex paramet@gron temperature of a vertical surface at naturaveotion under the conditions of
non-stationary heat transfer

1.0 --

Nu—NuT\ \‘ \Q\\
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s p=1000 1100 16\ [N 0.2 ‘0,0
NN N N
o2 (HIANIE NIAN 3
NERNAN gl
AU AN Sk~/Fo
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Fig. 4. Change in the Nusselt number at naturalection near the vertical surface under
the conditions of non-stationary heat transfer

2. Stationary stage of radiation-convective heat u ou %
U— + vV—=u— + T - 49
transfer x oy Yoy 95 ( T (49)
During the second stage at a predominant

effect of convective terms, the determining system oT  dT _ 0°T
of equations looks like: U&*‘Va—av (50)

6_u+6_u =0 (48) with boundary conditions

ox oy

ay=0
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u=v=20 (51)
—)I—aT =q, — &% (T -T))=q, (52)
oy
u=0 (53)
ou
—=0 54
oy (54)
T=d (55)
oT
—=0 56
oy (56)

A characteristic feature of the system of
equations (48) - (56) at its analytic description is,
firstly, the interrelationship of equations of mo-
mentum and energy transfer. Secondly, it is twice
nonlinear because of both momentum conserva-
tion equation (49) and equation of boundary con-
dition (52). In this connection, we can seek only
its approximate solutions. At the first stage, we
linearize the convective terms by introducing the
effective rate of transfer

Ugd)(x)i=ui+ui (57)
ox ox oy

This linearization is based on Oseen ap-
proach [14]. As for the first stage of non-
stationary heat transfer, the solution to the thermal
problem will be sought using an asymptotic ex-
pansion with the procedure of Laplace integral
transformation. As a result, asymptotics of solu-
tion with consideration of two terms of expansion,
is as follows

0
Ao

q 3(0-y)* -0
6

T-T, 0= [q.()dny+== (58)

wheren is integration variable. Using the condi-
tion at the external border of the boundary layer at
y =0 T =Tw, we obtain from (58)

X 52
Jandn =2 (59)
0

and then the temperature profile
(60)

the connection of J with ¢ and boundary layer
thickness follows from this profile =0

qé
2A

T,-T,= (61)

The solution to equation of motion (49) is
derived similarly, and at known temperature (60)
with consideration of boundary conditions (51)—
(56) it gives the following profile of longitudinal
velocity

3
u=9899°(_ n 4y 5y+2y (62)
2}y | &0 & 8 o

We should note that the effective transfer
rate U(x) (57) depends in a complex way on .
Pursuing the goal of obtaining the approximate-
analytical formulas, we will simplify it slightly,
expressing as the average integral one over the
boundary layer thickness

o ] 2
J'(uaT vjdy iJ'u(T—Tm)dy d(gﬂrqxésj
5 oy _dxy _dx

2

U (00 - _ox\ 840ty (63)
o 5
coT d d ( g.0°
5 SJa-Tody
5 OX dxy dx{ 641
Turning to variable x, according to (63), we 2) 2

represent integral equation (59) as jq dd(((? i_s) _%ﬁr&; (64)

Integral equation (64) allows closed solu-
tion
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We point out as an important circumstance

that the integral in (65) is expressed in elementary
(T, qT ) I(T T ) dT, = szjf (65) functions. In the dimensionless form it is
f(@ —1)?@ 0,0, —12 247 77-270/B-78 arctg
(B-05)*  12B(B-0})° 5128 08"

21,8 o,*+ 7,3@5’V —128,82 + 486,3@3V - 27@93v - 400,6’(95v + 24(‘6?V +12150,, - 77@5’V
' 3845° (-0}’ "9

Wy (77+270/8 - 78), ﬁ+@w _ 5 \/ﬁ+@2

7123* ﬁ—@w 1643* ﬁ o2

Here, 4/ also determine the maximal sur-

face temperature under the given conditions.
Using the L'Hospital rule [8], we can esti-
mate the contribution of integral (66) in solution
(65) for the limiting cases. Near the leading edge
of the plate®w — 1, where convective heat trans-

fer predominates. At a large distance from the
leading edge, where radiant heat transfer

o, - Q/ﬁprevails due to the large thermal re-
sistance of the boundary layer

. 0,-1

§Iwﬂ 0
A e A0,
@0 | "M35s-09)-160

(8-0,)* )

Wl

3 (67)
« % o, o,-4B

Thus, this integral decreases from 1/3 to 0.
Relationship (65) can be presented in dimension-
less form

(©, -1
(B-0,)°

0, _\4
+§I(ew 1)*de, _35SK (68)

(B-0%)*  Ra

It is also possible to determine the Nusselt
number

I(G) -1)*do,,

Nu=‘i/E 1+§ (B-0.) (69)
35 3 (0,-1°
(B-9,)"

As it was already mentioned, near the lower
edge of the plate®y — 1. Then, the Nu number
corresponds to the boundary conditions of the

second kind
NUu=+ / 4Ra
105

(70)

At a distance from the leading edge of the
plate, ©, — i/ﬁ and Nu number corresponds to
the boundary conditions of the first kind

Nu=4 R_a
\ 35

The latter indicates that in the regime of sta-
tionary radiation-convective heat transfer, as the
boundary layer develops, convective heat transfer
also degenerates from the boundary conditions of
the second kind to boundary conditions of the first
kind. These limiting solutions with an accuracy of
4% are consistent with the exact values [16].

It also follows from the limiting solutions
that a number of simplifying assumptions in the
solution at stage 2 (linearization of convective
terms according to (57), simplification of U (x) to
the average integral expression over the boundary
layer thickness, and keeping a finite number of
terms of asymptotic expansion) do not significant-
ly affect the accuracy of final results and they are
completely justified. This again indicates effec-

(71)

tiveness of the applied asymptotic method for cal-
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culating heat transfer in the boundary layer at nat-
ural convection. The obtained solutions confirm
reliably the qualitative study of R. Cess [1].

In the case of liquid cooling to the medium

with zero temperaturgd€0), the solutions become
significantly simpler

©, -1° 5 1 1 6 2 1
T ot T 3liet »E 1eE pE 1e®
1 355K
77117 Ra
(95 o' 60° 202 © J oo T
Sw_Swp PPw _“Mw g Mw [ Mw
/ 11 1 7 " 15) 77030
uedRel .5 3 13 7 5 305 73
357 3 (©,-D

The obtained solutions (72), (73) are illus-
trated by the diagrams in Figs. 5, 6. It follows
from the figures that with a distance from the
leading edge, the Nusselt number changes from

boundary conditions of the first kind. With an in-
crease in complex parametfr the process of
transition to the boundary conditions of the first
kind accelerates.

the boundary conditions of the second kind to the

1.0 o 1 = == [ //
[/ ,/ P
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Fig. 5. Change in the stationary temperature of-tegiating
surface along the height under the conditions ainahconvection
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Fig. 6. Change in the stationary Nusselt numbeargtbe surface height at natural convection
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The above-developed method for solving
the nonlinear heat transfer problem at natural con-
vection can be extended to liquids with variable
thermal-physical properties subjected to the linear
law, using the Dorodnitsyn transformation [4].
Comparing the obtained results with data of R.
Cess [1], we note that application of the perturba-
tion method to the problem solved here has a
number of fundamental drawbacks. Thus, the ex-
isting solutions [1] do not take into account the
effect of complex parameter of microwave and
thermal radiatiorf3 on the process of convective
heat transfer. To consider paramdigit is neces-
sary to derive the higher approximations by R.
Cess, which, in turn, makes it necessary to solve
the system of complex third-order differential
equations, and this is possible only numerically.

3. Harmonization of unsteady and stationary
solutions at natural convection

To join obtained solutions (41), (44) and
(68), (69), it is necessary to determine the spatial-
temporal characteristics, when both solutions are
valid. On the boundary between these areas, the
solutions must be joined under the condition of

equality of temperatures and heat fluxes. The ob-
tained general solution must satisfy initial energy
equation (4) and corresponding boundary condi-
tions. To find the boundary of transition from the

non-stationary solution to the stationary one, we
will use the energy equation in integral form to

get the simple connections

0 ¢ 0 ¢ aq,
— | (T-T,))dy+ — | u(T =T )dy+ =—= (74
at{( .)dy ax{”( 2)dy+ == (74)

Substituting temperature (60) and velocity
(62) profiles into equation (74), we obtain

98:q20°
6x 14Q00v

a(q, 52
ot

] 6aq, (75)

The methods of solution to this equation are
presented in hand-book [9]. To solve (75), let us
make transformation excluding the boundary layer
thickness, according to (61). Using boundary con-
dition (42) and making differentiation, we write
down (75) in the form

+ W = (76)

2(T,-T,) (T, -T.)*4e5,T. | dT, +
qw - 550 (Tvs _Te4) [qw_ EJO(ij _Te4)]2
S 3
L2984 | S(T,-T.)* 3T~ T.) , 8T | g7,
3&) qw - 550 (ij - Te4)_ qw - 550 (ij - Te4) ‘ dX

= 3 g, - e, (T -T)]

Solving this equation by the method of characteristics [9] dilkessystem of ordinary differential

equations
dt

2T, —T.,)

(T, -T.)?4e0,T.

qw - 850 (Tvs _Te4) [qw_ ‘950 (ij _Te4)]2

dx

5T, -T.)*

= (77)

i 29,3r/12 {

dT,

—_ w

Q, — €0, (T =T, )]

2

la, - &5, (T2 - )J

12(r ~T.)°&5,T?
-£0,(T)-TH)*
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The sought solution, describing the motion
of the joining boundary between the unsteady and
stationary solution, is determined by the differen-

tial equation that consists of the first two terms of
characteristic system (77)

dx

(78)
5T, -T.)°

dt _
o4 20T,(T,-T.) 298X
4,5y -T) 3%

[q —&0,(T2 - T, )]

12(T -T,) 4e9,T.}
- £0,(T3 -TH?

The integral of the last equation with con-
sideration of initial conditionx=0 at t=0 and
known relationship for surface temperature (41)
allows determination of a point of transition from
the unsteady solution to the stationary one. As a
result, the coordinate of stabilization poigtwill
be determined along the plate by dependence

11260,

35}(5(}]; < (B- @4) 142%(@D 0,79
(B-€4)

Pursuing the goal of obtaining the analyti-
cal assessments of connectian= f(t), we will
find theses dependences in the limit cases for low

(Gw - 1) and high®,, - i/ﬁ Using the Taylor
expansions into series, we will obtain for the ini-

tial stage of the process
3 2
D{ ‘E‘Eij at(80)

Substituting approximate estimate (80) in
form

(©,-9°

+o[©,-Ddo,
(B-0,)°

(B-0,)°

o, 1D€5T (3at)1/2
LB-1 A

(81)

into integral relationship (79) and perform-
ing integration, we will obtain, limiting ourselves
by the first term, dynamics of motion of a stabili-
zation point at the initial stage

X |:| Olog_—\gﬂf (ﬁ 1)85 T4 t5/2
APr

, (82)
atéy - 1, i.e.,

X t5/2

(83)

This relationship is in a good agreement
with data of other researchers [15].

The similar estimate can be obtained for
time-concluding stage, performing Taylor expan-

sion in a vicinity of ©,, - i/ﬁ Presenting the
approximate estimate in form

ik F-2 a1 (3at)* - @, (84)
B-0, A 43

and introducing it into integral (79), limiting our-
selves by the first term, we will obtain the de-
pendence of stabilization point coordinate on time

102579, (T, =T.) »

Pt
ato, - {/E i.e.,

(85)

o t?

These data agree well with [15]. Solutions
(82), (85) show that the time of steady-state re-
gime beginning decreases with increasing intensi-
ty of thermal radiation, that is, the velocity of
characteristic increases as it moves away from the
leading edge of the plate.

4. Experimental verification of the theoretical
model of radiation-convective heat transfer at
natur al convection

In order to check the admissibility of the
chosen simplifications in constructing the mathe-
matical model and accuracy of theoretical results,
we carried out a program of experimental studies
on stationary natural convection near a vertical
surface. Theoretical solutions of this problem,
presented in Sections 1, 2, made it possible to ex-
press the determined parameters of the stationary
radiation-convective heat transfer as a function of
two determining complexes, namely:
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e,-1

—w_— =1 (8,SkRa"") (86)
g -1
NuR&a"™* = f,(B, SkRa"") (87)

The detailed description of experimental
design, selected diagnostics, experimental tech-
niques, measurement schemes, processing of ex-
perimental data and their generalization, devel-
opment of a laboratory setup, and estimation of
experimental error are the subject of separate pub-
lication of the authors.

The theoretical and experimental values of
the surface temperature and Nusselt number at
natural convection are compared in Figs. 7 and 8.
In these experiments, the maximal theoretical
measurement error by dimensionless temperature
was within 5.6%< Ro < 7.0%, and by Nusselt
number, it was within 9.0% PNu< 12.1%. The

diagrams show the reliable correspondence of
theoretical and experimental results with an error
not exceeding the maximal theoretical values. The
figures also show that the effect of heat radiation
leads to degeneration of the Nusselt number from
the values corresponding to the boundary condi-
tions of the second kind to the values
characteristic for the boundary condition of the
first kind. The rate of this transition is determined
by complex parameter of microwave and thermal
radiationf3. The experiment confirms the adequa-
cy of the mathematical formulation of the problem
of dielectric heating of liquid in the regime of nat-
ural convection under non-stationary radiation-
convective heat transfer, ensures the validity of
simplifications introduced at theoretical analysis,
and guarantees the effectiveness of the developed
method for solving the nonlinear problems of such
complex heat transfer.

e, -1
s/B —1
1.0 Y8
0.8
_—
L |
p=2.8 8l XX
0.4 //
0.2
2 3 4 6 8 10! 13 2 3
SkRa '

Fig. 7. Comparison of theoretical (solid line, telaship (68)) and experimental results
(x — current studys — data of [11]) on distribution of surface tempera under
the conditions of stationary natural convectiof=2.8

NuRd'"*
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Fig. 8. Comparison of theoretical (relationship)(6%olid line) and experimental results
(x — current studys — experiments of [11]) on the Nusselt number aiaary natural convectiof=2.8
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Conclusion

1. A class of nonlinear problems on lig-
uid heating at natural convection under the influ-
ence of microwave energy with a small depth of
penetration under the conditions of non-stationary
radiation-convective heat transfer is investigated.
At theoretical analysis, construction of approxi-
mate solutions using asymptotic procedures was
the most fruitful.

2. In order to obtain the calculated de-
pendences on the temperature fields and Nusselt
numbers at natural convection near the vertical
surface, an approximate idea of complex heat
transfer as a combination of two successive stages
(non-stationary and steady) was introduced. Based
on this approach, using the asymptotic expan-
sions, the solutions for the indicated stages were
derived and compared for the limiting values of
the regime parameters. The solutions for non-
stationary and stationary heat transfer were joined
by the “vertical coordinate-time” characteristic.

3. The developed method made it possi-
ble to perform a detailed analysis of complex heat
transfer even before complex calculations and re-
veal the main regularities. It is shown that thermal
radiation leads to a change in convective heat
transfer from the boundary conditions of the sec-
ond kind to the boundary conditions of the first
kind. The rate of this transition is determined by
the complex parameter of microwave and thermal
radiationf.

4. To confirm the correct choice of the
mathematical model and corresponding simplifi-
cations introduced, steady natural convection was
studied experimentally. Comparison of theoretical
and experimental results gives relatively accurate
agreement.

5. The developed method for solving the
nonlinear problems of natural convection makes it
possible to take into account the linear character
of a change in hydrodynamic and thermal-
physical properties of heated liquid, introducing
the transformation of A.A. Dorodnitsyn.
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JADJIEKTPUUECKWI HATPEB KHUJAKOCTH B PEKUME TEMIIEPATYPHOM
CTPATHOUKALINU OKOJIO BEPTUKAJIBHOU ITOBEPXHOCTH B YCJIOBUAX
HECTAIIMOHAPHOT' O PAIMAIIMOHHO-KOHBEKTUBHOTI'O TEIINIOOBMEHA
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1 WuctutyT temnodusuxku CO PAH, npocnekr JlaBpentseBa 1, HoBocubupck, Poccust
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AHHOTAIUSA

N3yuen knacc HETUHEHHBIX 3a7a4 AUDIEKTPUUECKOTO HArpeBa >KUJIKOCTU B PEKUME €CTECTBEHHOM KOHBEK-
MU OKOJIO BEPTUKAIHHOW MOBEPXHOCTH B YCIOBHUSX HECTAI[IOHAPHOTO PaJHallOHHO-KOHBEKTHBHOTO TETI-
JI000MEHa TP MHKPOBOJIHOBOM BO3IEHCTBUU C MaJOW TIIyOMHOW NPOHWKHOBEHHS. PemreHus STuX 3amad
OCYIIIECTBJICHO Ha MOCIEIOBATEIBHBIX CTAIUAX HEYCTAHOBUBIIETOCS U CTAIIMOHAPHOTO TEIIOOOMEHA C MPH-
MEHEHHEM BechMa dPPEKTUBHBIX ACUMIITOTUYECKUX pa3iokeHuil. ClIMBKa HECTAIIMOHAPHOW U YCTaHOBUB-
mIelcst yacTel perieHuil BRIMOJIHEHA Ha XapaKTePUCTUKE «BEpTUKaJIbHAsI KOOpJAuHaTa — BpemMs». [locTpoen-
HBIC Ha TaKUX MOJAXO0JaX PEUICHUS HAXOISATCS B HAJCKHOM COIJIACHM C TOUHBIMH MPEACIbHBIMU PEIICHHUS-
Mmu. [TorpentHocTh MX He BBIXOUT 3a mpenenbl /%. [lo Mepe ynaneHust OT HUKHEW KPOMKH BEPTUKAITLHOM
MTOBEPXHOCTH MPOUCXOJUT W3MEHEHHE KOHBEKTHBHOTO TEIJIOOOMEHA OT 3HAYEHHH, CBOMCTBEHHBIX IPaHUY-
HOMY YCIIOBHIO BTOPOrO POJa, 10 BEIUYUH, XapaKTEPHBIX JUIsl TPAHUYHOrO YCJIOBHs MepBoro poaa. Cko-
POCTB 3TOTO TEepPexo/ia CHIBHEUITUM 00pa3oM 3aBUCUT OT KOMIUIEKCHOTO napamerpa CBY u TemnoBoro usz-
mydeHu. BaKHBIM TOCTOMHCTBOM pEIICHUH JAaHHOTO KJlacca BHEUTHUX 3a7ad SBISETCS TO, UTO eIle A0 Mpo-
BEJICHUS CJIOXHBIX PAcCUeTOB CTAHOBUTCS BO3MOXKHBIM IPOBECTH HCUEPIIBIBAIONINI aHAIN3 3aKOHOMEPHO-
cTel m3ydaembIx mpoueccoB. IIpu 3ToM, HE CMOTps Ha LENBIM Pl BBOJUMBIX MCXOIHBIX YIPOIICHUH, MO-
CJIEIHHE CYIIECTBEHHO HE CKa3bIBAIOTCA HA TOYHOCTU KOHEUHBIX PE3YNbTATOB, TAPAHTUPYS AOCTOBEPHYIO
KOJIMUYECTBEHHYIO MH(popmMarnio. Pa3paboTaHHBIN METOT MOKET OBITh PACIIMpPEH Ha PEKUMBI €CTECTBEHHOU
KOHBEKIIUY C JIMHEHHOW 3aBUCUMOCTHIO (PH3UYECKUX CBOWCTB YKHIKOCTH OT TEMIIEPATYphI, IPUMEHSS IIpe-
oOpaszoBanue A.A.JloponHunsiHa. [l MOATBEPKIACHUS aJIEKBATHOCTH IMOCTPOCHHOW MaTeMaTUYeCKOH MoO-
JIeNTA TIPOBEICHO IKCIIEPUMEHTAIbHOE MCCIIEJOBAaHNE CTAllMOHAPHOTO PaTHallMOHHO-KOHBEKTHBHOTO TETLIO-
oOmeHa. CpaBHEHHE PE3yNTATOB TEOPETUIECKOTO U OMBITHOTO MCCIEIOBAHUS MOKA3bIBAET UX JOCTATOYHOE
COOTBETCTBHE. DTO €Ille pa3 MoATBepkaAaeT YP(HEKTHBHOCTh Pa3pabOTaHHOTO METO/Ia TIOCTPOCHHS TEOPETH-
YEeCKUX PEIICHNH HEeTMHEWHBIX 3a/1a4 €CTECTBEHHOW KOHBEKIIMH C UCTIOJIh30BAHUEM aCHUMIITOTUYECKHUX TPO-
nenyp.

KaroueBrble c10Ba: TUAIICKTPUYECKUN HArPeB, HECTAIIMOHAPHBINA TETNIOOOMEH, KOHBEKITUS

CTAIMOHAPJIBI EMEC COVJIEJEHY-KOHBEKTHBTIK KBLTY BEPY KAFIAMBIHIA
TIK KABATTBIH JKAHBIHJIA TEMITEPATYPAJIBIK CTPATU®UKALAS PEKUMIHJIE
CYWBIKTBIKTBIH JUJIEKTPIK )KbLIBITY
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AHHOTAIUSA

Kimri TepeHIikTiH eHyiMEeH MHUKPOTOJKBIHABI dCep KE3iHIAE CTalMOHApIBl €MeC CayJieleHY-KOHBEKTHUBTIK
KBUTy Oepy JKarmaiblHAa TiK OCTiHEe >KaKbIH TaOWFHW KOHBEKIHMS PEKUMIHIE CYHBIKTHIKTBIH JHAJICKTPIIIK
KBI3YBIHBIH CBI3BIKTBI €MEC Mocelleepi 3eprTrenesi. ATtamraH mpoOjeManapAsl IMemy oTe THIMII
ACUMIITOTAIBIK KCHEWTYI KOJIJaHy apKbUIBI TYPaKCHI3 JKOHE CTAllMOHAPJIBIK JKBUTY aaMacyAblH ITOHEKTI
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Ke3eHIEpiHAe JKY3ere achIpblUIanbl. EpITIHIIIEPIIH CTAIIMOHAPIBIK eMeC JKOHEe TYPAKTBhI KyH OeiKTepiHiH
TITiCl «TiK KOOpPJIWHATAIBIK YaKbIT» CHUIIATTaMachblHIa oOpbiHAamansl. OcChlHAAlW Ke3KapacTap OOWBIHIIA
yKacaJlFaH IIeTIiMIep A9J KT MeniMaepMeH ceHiMIi kemiceni. Omapabiy kateniri 7% -1an acnainel. Tik
KabaT TOMEHTI KMEKTCH albIHAIbI, KOHBEKTHBTI XKBITy alqMacy CKiHII TYpHAEri IMeKapajblK XKaFmaiFa TOH
MOHJIEpACH OIpiHII TypHeri MieKapanblK >KaFgaiifa TOH MOHJIEpre esrepemi. bysr ermeni Ke3eHHIH
KBUIJAMJIBIFBl ©T€ JKOFaphl JKUUIIKTEp MEH KBULy COYJICNEPiHiH KypHeldi mapaMeTpiHe OalIaHBICTHI.
ChIpTKBI Mpo0eManapblH OChl KJIACHIHAAFI MICIIIMACPAIH MAaHbI3IbI aPTHIKIIBUIBIFEI - KYpJeIli ecenTepre
JEeHiH 3epTTeNiN JKaTKaH IPOIECTePAiH 3aHIBUIBIKTAPBIH TOJBIK Talfay jkacayFa MYMKIHIIK Oepemi.
ConbIMeH Katap, OipkaTap OacTamnkbl OHAMIATyJIap CHTI3UITeHIHE KapaMacTaH, COHFBI CaHJBIK JCPEKTEpre
KeMUIAIK OepeTiH TYNKUTIKTI HOTHKENEPIiH AYPBICTBIFBIHA alTapIIbIKTal ocep eTHeH .

Ozipienred aaic A.A. JIopoaHUIIMHHIH TpaHCHOPMALUACHIH KOJIIaHa OTBHIPBIIN, CYWBIKTBIKTBIH (BHU3UKAJIBIK
KaCHETTEpiHIH TeMIlepaTypara CBI3BIKTBIK TOYEIAUIIri Oap TaOWFM KOHBEKIHS pEXUMIACpPIHE eHiH
KeHelTimyi MyMkiH. KypbimFaH mareMaTuKaiblK MOJENbAIH OapabapibIFblH pacTay YIIIH CTallMOHAPIIBIK
paTuaIusIIBIK-KOHBEKTHBTIK JKBUTYIBI TOKIPHUOCITIK 3epTTEY KYPrizingi. TeoprsuiblK KoHE DKCIICPUMEHTTIK
3epTTEYNICPAIH HOTIKEIEPIH CaNBICTHIPY OJIAPABIH JKaKChl KENMICUITEHIH KepceTeli. byl acHMITOTHKAIBIK
MpoLeAypaiapsl KOJJAaHA OTBIPHIN, TAaOWFH KOHBEKIUSHBIH CBI3BIKTHI €MEC MIHACTTEPiHIH TEOPHSIIBIK
MICTIMICPIH JKacay IbIH d31pJICHIeH dJIICiHIH TUIMIUIITIH TaFbl 1a pacTanipl.

TyiiiH ce3aep: TUIICKTPIIIK KbLTy, CTALIMOHAPIIBIK EMEC KbLTY 6epy, KOHBEKITH
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