Однокомпонентные катализаторы синтеза смеси H_2 и CO из природного газа метана

Г.Е. Ергазиева^{1,3*}, Р.Х. Тургумбаева², М.М. Тельбаева¹, А.А. Розиев², К.М. Сахиева², К. Досумов¹

Дата поступления: 4 мая 2020

Принято на печать: 8 июня 2020

Доступно онлайн: 30 июня 2020

УДК: 54-44; 546.7; 546.11

АННОТАЦИЯ

В реакции углекислотной конверсии метана до синтез-газа исследованы однокомпонентные катализаторы на основе оксидов (NiO, Co₂O₃ и MoO₃), нанесенные на различные носители (θ -Al₂O₃, γ -Al₂O₃, 5A, 4A, 3A, 13X, HY и HZSM-5). Определен оптимальный состав катализатора на основе оксида никеля с содержанием на носителе 3 масс.%, оксида кобальта – 15 масс.% и оксида молибдена – 10 масс.%. Изучено влияние методов приготовления на активность эффективного 3 масс.% NiO/ γ -Al₂O₃ катализатора в реакции углекислотной конверсии метана в H₂ и CO. Для никелевого катализатора с низким содержанием активной фазы выбран оптимальный способ приготовления (метод капиллярной пропитки носителя по влагоемкости). На 3 масс.% NiO/ γ -Al₂O₃ катализаторе при условии реакции CH₄:CO₂ = 1:1, T_p – 800 °C, W = 1500 ч⁻¹ значения конверсии и выхода целевых продуктов составляют: X_{CH4} – 89%, X_{CO2} – 93%, C (H₂) – 45,4%, C (CO) – 42,4%.

Ключевые слова: катализатор, метан, диоксид углерода, конверсия, синтез-газ.

Введение

Водород является важным сырьем в химической и нефтяной промышленности. Он используется в производстве аммиака, метанола и др., а также в различных процессах гидроочистки нефти. Возможность использования водорода как экологически чистого источника энергии общего назначения для отопления помещений, выработки электроэнергии и использования в качестве транспортного топлива может привести к огромному увеличению потребности в водороде [1]. Следует также отметить, что водород представляется наиболее чистым из всех существующих топлив.

В настоящее время конверсия природного газа и других легких углеводородов с помощью паровой конверсии является основным процессом получения водорода. Водород высокой чистоты получают электролизом воды, однако данный метод не станет конкурентоспособным в ближайшем будущем из-за высоких энергетических затрат.

В последнее время способ углекислотной конверсии природного газа метана в водород и/или синтез-газ является широко исследуемым в области экологического катализа. Углекислотная конверсия метана (УКМ) представляет особый инте-

рес по ряду причин: в качестве исходного сырья в нем используются два основных парниковых газа (CO_2 и CH_4), соотношение H_2/CO в продуктах реакции близка к единице, это соотношение синтез-газа подходит для синтеза Фишера-Тропша [2], кроме того УКМ дает возможность для широкого использования возобновляемого биогаза, содержащий метан и диоксид углерода, получаемого путем сбраживания биомассы.

Согласно литературе [3-5] реакция углекислотной конверсии метана протекает по окислительно-восстановительному механизму. Известно [4], что в окислительно-восстановительных реакциях наибольшей активностью обладают элементы с частично незаполненной d-оболочкой, то есть переменной валентности. Для наших исследований были выбраны оксиды металлов Ni, Mo и Co. В качестве носителей для этих катализаторов используют в основном синтетические носители. Они имеют ряд преимуществ по сравнению с природными глинами и цеолитами: постоянный химический состав, возможность регулирования пористой структуры для получения высокоактивного катализатора, возможность получения катализатора в виде гранул или другой заданной формы [6]. Поэтому в наших исследованиях в качестве носителей ката-

¹Институт проблем горения, ул. Богенбай Батыра 172, Алматы, Казахстан

²Казахский национальный педагогический университет имени Абая, Алматы, Казахстан

 $^{^3}$ Казахский национальный университет им. аль-Фараби, пр. аль-Фараби 71, Алматы, Казахстан

лизаторов были выбраны синтетические носители, такие как оксиды алюминия (θ -Al₂O₃, γ -Al₂O₃) и цеолиты (5A, 4A, 3A, 13X, HY, HZSM-5).

Влияние метода приготовления катализаторов на их активность и селективность в реакции углекислотной конверсии метана в H_2 и CO является важным направлением в катализе [7]. Приготовление образцов высокодисперсных нанесенных катализаторов на основе новых методов должно позволить проводить более глубокую оценку эффектов нанесения и промотирования. Однако отсутствие достаточно хорошо разработанной теории каталитических процессов не позволяет заранее устанавливать рациональную методику приготовления активных катализаторов, и поэтому до сих пор при разработке катализаторов для практического применения приходится идти опытным путем.

Целью настоящей работы являлось выбор эффективного носителя и разработка высокоэффективного однокомпонентного катализатора с низким содержанием активной фазы на носителе, а также определение эффективного метода приготовления низкопроцентных катализаторов.

Экспериментальная часть

Катализаторы готовили методом глубокой пропитки носителя (МГП), а также капиллярной пропитки носителя по влагоемкости (МКП) растворами азотнокислых солей металлов переменной валентности.

Суть способа капиллярной пропитки носителя $(\gamma-Al_2O_3)$ по влагоемкости водным раствором азотнокислых солей заключается в том, что носитель пропитывается по его влагоемкости растворами солей металлов, и активная фаза концентрируется на поверхности в виде «корочки». Метод обычной пропитки носителя осуществляется традиционно погружением носителя в раствор солей металлов до

Рис. 1. Автоматизированная проточная установка.

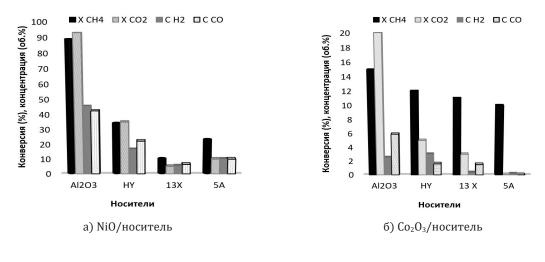
глубокой пропитки носителя. Катализаторы были просушены при 300 °С (2 ч) и прокалены при 500 °С в течение 3 ч [8].

Тестирование активности носителей и синтезированных катализаторов в процессе углекислотной конверсии метана в H_2 и CO проводилось на лабораторной установке проточного типа (рис. 1). Смешанный газ ($CH_4+CO_2=1:1$) подавался со скоростью $50~{\rm cm}^3/{\rm muh}$ в кварцевый реактор с катализатором сверху, после прохождения реактора смесь образованных продуктов реакции идет на хроматограф для идентификации.

Исследование активности носителей и катализаторов в процессе УКМ проводили в интервале температур $600-850~^{\circ}$ С, объемной скорости реакции $500-4000~^{\circ}$ 1, при атмосферном давлении. Количественный анализ исходных реагентов (СН₄, CO₂) и продуктов реакции (СО, H₂, CO₂ и т.д.) анализировались хроматографическим методом на хроматографе «XPOMOC-1000» с детектором по теплопроводности и пламенно-ионизационным детектором.

Результаты и их обсуждение

В УКМ были исследованы отдельно носители (θ -Al₂O₃, γ -Al₂O₃, 5A, 4A, 3A, 13X, HY и HZSM-5), тестирование активности носителей проводили при W = 1500 y^{-1} , CH₄:CO₂ = 1:1, в температурном интервале $600-850 \, ^{\circ}$ C. Результаты экспериментов показали, что наибольшая конверсия CH₄ и CO₂ происходит на носителе γ -Al₂O₃. Самая низкая конверсия метана и диоксида углерода наблюдается на цеолитах 4A и 5A, конверсия метана составляет около 9-10%.


По активности в конверсии метана, изученные носители располагаются в следующей последовательности: γ -Al₂O₃ (20%) = HY (20%)> θ -Al₂O₃ (18%) >13X (17%)>3A(15%)>HZSM-5 (13%)>5A(10%) >4A (9%).

В конверсии диоксида углерода: γ -Al₂O₃ (20%)> θ -Al₂O₃(18%)>13X (17%) = HZSM-5 (17%)>3A (15%)>HY (13%)> 5A(9%)>4A (8%).

На носители, показавшие наиболее высокие показатели конверсии метана и диоксида углерода (γ -Al $_2$ O $_3$, HY, 13X и 5A) были нанесены оксиды металлов (Ni, Mo, и Co). Сравнительные результаты представлены на рис. 2, условия реакции: CH $_4$:CO $_2$ = 1:1, T_p – 800 °C, W = 1500 ч $^{-1}$.

Активность оксидов (NiO, Co_2O_3 и MoO_3) в реакции УКМ увеличивается с нанесением их на оксид алюминия γ - Al_2O_3 . Наибольшие показатели по конверсии и по выходам целевых продуктов наблюдаются для катализатора 3 масс.% NiO/ γ - Al_2O_3 – XCH₄ – 89%, XCO₂ – 93%, C (H₂) – 45,4%, C (CO) – 42,4%.

В следующей серии экспериментов было изучено влияние содержания оксида никеля, оксида молибдена и оксида кобальта, нанесенных на эффективный носитель γ-Al₂O₃, на направление процесса УКМ.

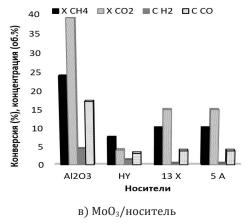


Рис. 2. Влияние природы носителя на активность оксидов (NiO, Co_2O_3 и MoO_3) в реакции углекислотной конверсии метана до синтез-газа.

Содержание оксидов на носителе варьировалось в интервале от 1 до 20 масс.%. Активность синтезированных катализаторов в процессе УКМ изучалась в интервале температур 600-850 °C. На рисунке 3 приведены результаты, полученные при оптимальной температуре реакции – 800 °C.

Как видно из рисунка 3, при повышении содержания оксида молибдена на носителе от 1 до 20 мас.% идет повышение конверсии диоксида углерода от 19 до 48%, при этом увеличение концентрации СО и Н₂ в продуктах реакции незначительное. С увеличением содержания оксида никеля от 1 до 3 масс.% идет резкое повышение конверсии метана и диоксида углерода, а также концентрации водорода и оксида углерода в продуктах реакции. При этом показатели конверсии и концентрации целевых продуктов реакции УКМ для наиболее активного катализатора 3 масс.% NiO/γ-Al₂O₃ составляют: XCH₄ - 89%, XCO₂ - 93%, C (H₂) - 45,4%, C (CO) - 42,4%. Селективность по целевым продуктам составляет - S (H₂)-50%, S (CO) - 47,5%. Дальнейшее повышение содержание оксида никеля на носителе от 3 до 20 масс. % не влияет на показатели реакции. Влияние содержание оксида кобальта на направление УКМ по сравнению с оксидом никеля имеет другой характер. Наибольшая активность оксида кобальта в процессе УКМ проявляется при высоких его концентрациях на носителе, 15 масс.% и 20 масс.% Co_2O_3/γ -Al $_2O_3$. При содержании оксида кобальта на носителе 15 масс. %, конверсия метана составляет 95%, диоксида углерода – 90%, концентрации водорода и монооксида углерода достигают 45 и 42 об.% соответственно. При этом селективность по целевым продуктам составляет – $S(H_2)$ – 49,5%, S(CO) – 46,6%.

Далее было исследовано влияние метода приготовления на активность эффективного 3 масс.% NiO/γ - Al_2O_3 катализатора в реакции углекислотной конверсии метана. Катализатор 3 масс.% NiO/γ - Al_2O_3 был приготовлен также методом глубокой пропитки. Сравнительные результаты активности 3 масс.% NiO/γ - Al_2O_3 катализатора синтезированного методом глубокой пропитки и методом капиллярной пропитки носителя представлены на рис. 4. Катализаторы были протестированы в реакции углекислотной конверсии метана в интервале температур 600-850 °C. На рис. 4 приведены результаты, полученные при условии реакции W=1500 ч⁻¹, $CH_4:CO_2=1:1, T=800$ °C.

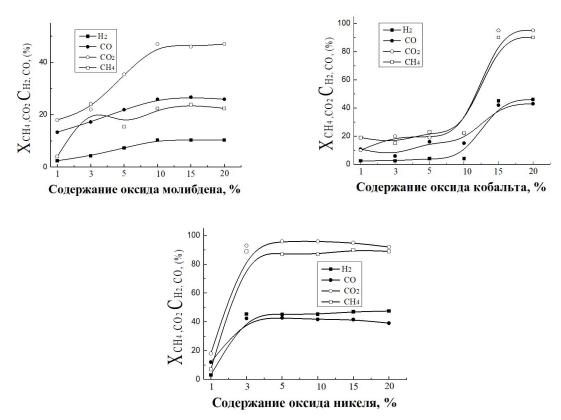


Рис. 3. Влияние содержания оксида молибдена, оксида кобальта и оксида никеля на носителе γ -Al $_2$ O $_3$, на конверсию исходных реагентов и выход продуктов реакции УКМ.

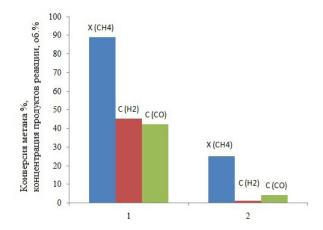


Рис. 4. Влияние метода приготовления 3 масс.% NiO/ γ -Al $_2$ O $_3$ катализатора на его активность в реакции УКМ: 1 — метод капиллярной пропитки; 2 — метод глубокой пропитки.

Как видно из рис. 4, катализатор, приготовленный методом капиллярной пропитки носителя по влагоемкости, является активным в реакции УКМ по сравнению с катализатором, синтезированным методом глубокой пропитки. Повышение активности катализатора, приготовленного методом капиллярной пропитки, возможно связано с распределением активного компонента по внешней поверхности гранулы. Так как концентрация активной фазы мала (3 масс.%) и распределение ее по внеш-

ней поверхности носителя ведет к более легкому взаимодействию исходных компонентов (CH_4 , CO_2) с активными фазами 3 масс.% NiO/γ - Al_2O_3 катализатора. Синтезирование катализатора методом глубокой пропитки приводит к распределению активного компонента по объему гранулы, что приводит к затруднению для взаимодействия CH_4 и CO_2 с активными фазами никелевого катализатора.

Таким образом, определено влияние природы носителей (синтетические оксиды алюминия θ -Al₂O₃, γ -Al₂O₃ и цеолиты 5A, 4A, 3A, 13X, HY, HZSM-5) на направление реакции углекислотной конверсии метана. По активности в конверсии метана, изученные носители располагаются в следующей последовательности: γ -Al₂O₃ (20%) = HY (20%)> θ -Al₂O₃ (18%) >13X (17%)> 3A (15%)>HZSM-5 (13%) > 5A(10%) >4A (9%). Для нанесения активной фазы катализатора для процесса УКМ выбраны более эффективные носители (γ -Al₂O₃, 13X, HY).

В качестве активной фазы исследованы оксиды Ni, Mo и Co, тестирование активности данных оксидов показало, что наиболее эффективными в реакции углекислотной конверсии метана в водород и монооксид углерода являются катализаторы на основе оксидов никеля и кобальта. Определен оптимальный состав катализатора на основе оксида никеля, с содержанием на носителе 3 масс.%, и оксида кобальта – 15 масс.%. При условии реакции $CH_4:CO_2 = 1:1$, $T_p - 800$ °C, W = 1500 ч $^{-1}$ значения конверсии,

выхода целевых продуктов и селективности составляют: для катализатора 3 масс.% NiO/ γ -Al $_2$ O $_3$: X_{CH4} – 89%, X_{CO2} – 93%, C (H $_2$) – 45,4%, C (CO) – 42,4%. Селективность по целевым продуктам – S (H $_2$) – 50%, S (CO) – 47,5%. Для 15 мас.% Co_2O_3/γ -Al $_2O_3$: X_{CH4} – 95%, X_{CO2} – 90%, C (H $_2$) – 45%, C (CO) – 42%. Селективность по целевым продуктам – S (H $_2$) – 49,5%, C (CO) – 46,6%.

Изучено влияние методов приготовления (метод глубокой пропитки, метод капиллярной пропитки) на активность наиболее эффективного 3 масс.% NiO/γ - Al_2O_3 катализатора в реакции углекислотной конверсии метана. Для 3 масс.% NiO/ү- Al_2O_3 катализатора выбран оптимальный способ приготовления (метод капиллярной пропитки носителя по влагоемкости) который благодаря распределению активного компонента (NiO, Ni) по внешней поверхности гранулы позволил повысить его каталитическую активность для получения синтез-газа углекислотной конверсией метана. При условии реакции CH_4 : $CO_2 = 1:1$, $T_p - 800$ °C, W = 1500ч-1 значения конверсии, выхода целевых продуктов и селективности составляют: X_{CH4} – 89%, X_{CO2} – 93%, С (Н₂) - 45,4%, С (СО) - 42,4 %. Селективность по целевым продуктам – S (H_2) – 50%, S (CO) – 47,5%.

Список литературы

- [1]. Chen X., Shen S., Guo L., Mao S.S. Semiconductor-based Photocatalytic Hydrogen Generation // Chemical Reviews (Washington, DC, United States). 2010. Vol. 110, No 11. P. 6503–6570.
- [2]. Chike George Okoye-Chine, Mahluli Moyo, Xinying Liu, Diane Hildebrandt. A critical review of the impact of water on cobalt-based catalysts in Fischer-Tropsch synthesis// Fuel Processing Technology – 2019 – Vol.192, P. 105-129.
- [3]. Shao H., Kugler E. L., Ma W., Dadyburjor D. B. Effect of temperature on structure and performance of in-house cobalt-tungsten carbide catalyst for dry reforming of methane // Ind. Eng. Chem. Res. 2005. Vol. 44. P. 4914– 4921
- [4]. Dossumov, K., Yergaziyeva, Y.G., Myltykbayeva, L.K., Telbayeva, M.M. Dry reforming of methane on carriers and oxide catalysts to synthesis-gas // Eurasian Chemico-Technological Journal 2018 Vol. 20 P. 131-136.
- [5]. D. San-José-Alonso, J. Juan-Juan, M.J. Illán-Gómez, M.C. Román-Martínez. Ni, Co and bimetallic Ni-Co catalysts for the dry reforming of methane // Applied Catalysis A: General. 2009 Vol. 371, P. 54-59. https://doi. org/10.1016/j.apcata.2009.09.026
- [6]. Колесников И.М. Катализ и производство катализаторов. М.:Техника, 2004. 400 с.
- [7]. Won-Jun Jang, Jae-Oh Shim, Hak-Min Kim, Seong-Yeun Yoo, Hyun-Seog Roh. A review on dry reforming of methane in aspect of catalytic properties // Catalysis Today. 2019 Vol. 324. P. 15-26

[8]. K. Dossumov, G.E. Ergazieva, B.T. Ermagambet, L.K. Myltykbaeva, M.M. Telbaeva, A.V. Mironenko, M.M. Mambetova, and G. Kasenova. Morphology and Catalytic Properties of Cobalt-Containing Catalysts Synthesized by Different Means// Russian Journal of Physical Chemistry A, 2020, Vol. 94, No. 4, pp. 880–882.

Single-companent catalysts for the synthesis of mixture H_2 and CO from natural gas- methane

G.E. Ergazieva^{1,3}, R.Kh. Turgumbaeva², M.M. Telbayeva¹, Roziev A.A.², Sakhieva K.M.², Dossumov K.¹

¹Institute of Combustion Problems, Almaty, Kazakhstan ²Kazakh National Pedagogical University named after Abay, Almaty, Kazakhstan

³Kazakh National University named after Al-Farabi, Almaty, Kazakhstan

ABSTRACT

One-component catalysts based on oxides (NiO, Co₂O₃ and MoO₃) supported on various supports $(\theta-Al_2O_3, \gamma-Al_2O_3, 5A, 4A, 3A, 13X, HY, and HZSM-5)$ have been studied in the reaction of carbon dioxide conversion of methane to synthesis gas. The optimal composition of a catalyst based on nickel oxide with a support content of 3 wt%, cobalt oxide - 15 wt% and molybdenum oxide - 10 wt% was determined. The effect of preparation methods on the activity of an effective 3 wt% NiO/γ - Al_2O_3 catalyst in the reaction of carbon dioxide conversion of methane to H₂ and CO was studied. For a nickel catalyst with a low content of the active phase, an efficient preparation method was chosen (the method of capillary impregnation of the support in terms of moisture capacity). On an effective 3 wt.% NiO/γ - Al_2O_3 under the reaction conditions CH_4 : $CO_2 = 1$: 1, $T_r - 800$ °C, $W = 1500 \text{ h}^{-1}$, the values of conversion and yield of the target products are: X_{CH4} -89%, X_{CO2} - 93%, C (H₂) - 45.4%, C (CO) - 42.4%.

Табиғи газ метаннан H₂ мен СО қоспасын синтездеуге арналған біркомпонентті катализаторлар

Г.Е. Ерғазиева 1,3 , Р.Х. Тургумбаева 2 , М.М. Тельбаева 1 , А.А. Розиев 2 , К.М. Сахиева 2 , К. Досумов 1

 1 Жану проблемалары институты, Алматы, Қазақстан 2 Абай атындағы Қазақ ұлттық педагогикалық университеті, Алматы, Қазақстан

³әл-Фараби атындағы Қазақ ұлттық университеті, Алматы, Қазақстан

АҢДАТПА

Метанның синтез газға дейінгі көмірқышқылдық конверсиясында әр-түрлі (θ -Al $_2$ O $_3$, γ -Al $_2$ O $_3$, 5A, 4A, 3A,

13Х, НҮ және HZSM-5) тасымалдағыштарға отырғызылған NiO, Co_2O_3 және MoO_3 оксидтер негізінде біркомпонентті катализаторлар зерттелді. Тасымалдағыштың құрамында 3 масс.% никель оксиді, 15 масс.% кобальт оксиді және 10 масс.% молибден оксиді негізіндегі оңтайлы катализатордың құрамы анықталды. Метанның H_2 мен CO-ға көмірқышқылдық конверсиясы реакциясында эффективті 3 масс.% NiO/ γ -Al $_2O_3$ катализаторының белсенділігіне дайындау әдістерінің әсері зерттелді. Никельді

катализаторы үшін метанның көмірқышқылдық конверсиясы арқылы H_2 мен CO алу үшін каталити-калық белсенділігін арттыратын эффективті әдіс (тасымалдағышты ылғал сиымдылығы бойынша капиллярлы сіңіру әдісі) таңдалды. Эффективті 3 масс.% NіO/ γ -Al $_2$ O $_3$ катализаторында реакцияның жағдайы CH $_4$:CO $_2$ = 1:1, T_p – 800 °C, W = 1500 сағ $^{-1}$ болғанда конверсия мәні мен мақсатты өнімдердің шығымы – X_{CH4} – 89%, X_{CO2} – 93%, C (H_2) – 45,4%, C (H_3) – 42,4% құрайды.