IRREGULARS OF THE ELENBAAS-HELLER EQUATION SOLUTIONS FOR ELECTRIC ARC CANAL

  • V. A. Zhovtyansky The Gas Institute of the National Academy of Sciences of Ukraine, Degtyarivs’ka Str. 39, Kyiv, Ukraine
  • E. P. Kolesnikova National Technical University of Ukraine "Kyiv Polytechnic Institute", Ave. Peremohy 37, Kyiv, Ukraine
  • Yu. I. Lelyukh The Gas Institute of the National Academy of Sciences of Ukraine, Degtyarivs’ka Str. 39, Kyiv, Ukraine
  • P. V. Porytsky Institute for Nuclear Research of the National Academy of Sciences of Ukraine, Avу. Nauky 47, Kyiv, Ukraine
  • Ya. V. Tkachenko The Gas Institute of the National Academy of Sciences of Ukraine, Degtyarivs’ka Str. 39, Kyiv, Ukraine
  • Yu. A. Honcharuk The Gas Institute of the National Academy of Sciences of Ukraine, Degtyarivs’ka Str. 39, Kyiv, Ukraine
Keywords: electric arc, equationtion Elenbaas-Geller, thermal conductivity, copper and air plasma, transport coefficients of energy

Abstract

The numerical simulation shows the presence of irregular solutions of the Elenbass-Heller equation in determining the radial structure of the electric arc canal. It is caused by the thermal conductivity nonmonotonic character. The calculations are performed on the example of copper-air plasma, where this conductivity has strongly pronounced maximums. The methodology and results of the determination of the transport coefficients in copper-air plasma with various ratios of the components are presented briefly. The results of calculations allow estimating the role of energy transport processes in the formation of the canal radial structure as well as the formation of the electric field strength dependence on the discharge current magnitude.

References

(1). Zhovtyansky V.А. Plasmochemical effects and some fundamental problems of the physics of gas discharge. Ukr. J. Phys. – 2008. – V. 53, N 5. – P. 490 – 496.

(2). Финкельнбург В., Мекер Г. Электрические дуги и термическая плазма. – М.: ИИЛ, 1961. 370 с.

(3). Жовтянский В.А. Неравновесные свойства электродуговой плазмы атмосферного давления // Горение и плазмохимия. 2011. – Т. 9, № 4. – С. 310– 315.

(4). Zhovtyansky V.A., Lelyukh Yu.I., Tkachenko Ya.V. Effect of radiation transfer on a deviation of dense electric-arc plasma from the equilibrium state: criterion approach. Ukr. J. Phys. 2012. – V. 57, N 3. – P. 311–321.

(5). Zhovtyansky V.A., Lelyukh Yu.I. and Tkachenko Ya.V.. Nonequilibrium of the dense nonuniform plasma due to radiation transfer. Invited lecture. XIX Int. Conf. on Gas Discharges and their Applications (2nd – 7th September 2012, Beijing, China). Proceedings. Ed. Z.C Guan. – Beijing: Tsinghua University, 2012. P. 40–47.

(6). Abdelhakim H., Dinguirard J.P., Vacquie S. The Influence of Copper Vapour on the Transport Coefficient in a Nitrogen Arc Plasma. J. Phys. D. Appl. Phys. 1980. – V.13 – P. 1427–1438.

(7). Ouajji H., Cheminat B., Andanson P. Composition and conductivity of a copper-air plasma. J. Phys. D: Appl. Phys. – 1986. – V.19. – P. 1903–1916.

(8). Devoto R.S. Transport properties of ionized monatomic gases. Physics of Fluids. – 1966. – V. 9, No 6. – P. 1230-1240.

(9). Devoto, R. S., Simplified expressions for the transport properties of ionized monatomic gases. Physics of Fluids. – 1967. – V. 10, No 2. – P. 354–364.

(10). Capitelli M., Bruno D., Laricchiuta A. Fundamental Aspects of Plasma Chemical Physics: Transport. – NY: Springer, 2013. – 310 pp.

(11). Zhdanov V.M. Transport processes in multicomponent plasma. – London and New York: Taylor & Francis, 2002. – 277 pp.

(12). Porytsky P., Krivtsun I., Demchenko V., et al. On the application of the theory of Lorentzian plasma to calculation of transport properties of multicomponent arc plasmas. European Phys. Journ. D.: At. Mol. Opt. and Plasma Phys. – 2010. – Vol. 57, No 1. – P. 77–85.

(13). Porytsky P., Krivtsun I., Demchenko V., et al. Transport properties of multicomponent thermal plasma: Grad method versus ChapmanEnskog method. Physics of Plasmas. – 2013. – Vol.20, Iss. 2. – P. 023504.

(14). Чиркин В.С. Теплофизические свойства материалов ядерной техники / Справочник. – М.: Атомиздат, 1968. – 484 с.

(15). Таблицы физических величин. Справочник / Под ред. И.К. Кикоина. – М.: Атомиздат, 1976. – 1006 с.

(16). Асиновский Э.И., Кириллин А.В., Низовский В.Л. Стабилизированные электрические дуги и их применение в теплофизическом эксперименте. – М.: Наука, 1992. – 263 с.

(17). Бабич И.Л., Веклич А.Н., Жовтянский В.А. Исследование роли самопоглощения излучения в свободногорящих дугах в парах меди методом лазерной диагностики // Журн. прикл. спектр. – 1989. – Т.51, N 4. – С. 571–575.

(18). Zhovtyansky V.A. The interrelation between the departure from LTE and the space modes of electric arc plasma and diagnostic problems XXIII Intern. Conf. Phenomena in Ionized Gases (Toulouse, France. July 17-22, 1997): Contr. Papers. – Toulouse: University Paul Sabatier, 1997. – Vol. II. – P. 152–153.

(19). Бабич И.Л., Веклич А.Н., Жовтянский В.А., Чередарчук А.И. Физические особенности и диагностика плазмы свободногорящей электрической дуги в парах меди // Инженерно-физический журнал. – 1998. – Т.71, № 1. – С. 131–138.

(20). Григолюк Э.И., Шалашилин В.И. Проблемы нелинейного деформирования: Метод продолжения решения по параметру в нелинейных задачах механики твердого деформированного тела. – М.: Наука, 1988. – 232 с.

(21). Райзер Ю.П. Физика газового разряда. – М.: Наука, 1987. – 592 с.

(22). Капцов Н.А. Физические явления в вакууме и разреженных газах. – М.-Л.: ГТТИ, 1933. – 368 с.

(23). Philips R.L. Theory of the non-stationary arc column. Brit. J. Appl. Phys. – 1967. – V. 18, N 3. – P. 65 – 78. (см. также: http://deepblue.lib.umich.edu/bitstream/handle/2027.42/48861/bjv18i1p65.pdf?sequence=2&isAllowed=y)

Published
2015-05-26
How to Cite
Zhovtyansky, V., Kolesnikova, E., Lelyukh, Y., Porytsky, P., Tkachenko, Y., & Honcharuk, Y. (2015). IRREGULARS OF THE ELENBAAS-HELLER EQUATION SOLUTIONS FOR ELECTRIC ARC CANAL. COMBUSTION AND PLASMA CHEMISTRY, 13(2), 110-118. Retrieved from https://cpc-journal.kz/index.php/cpc/article/view/16